Definition: **matrix of an operator, $\mathcal{M}(T)$**

Suppose $T \in \mathcal{L}(V)$ and v_1, \ldots, v_n is a basis of V. The *matrix of T* with respect to this basis is the n-by-n matrix

\[
\mathcal{M}(T) = \begin{pmatrix}
A_{1,1} & \cdots & A_{1,n} \\
\vdots & \ddots & \vdots \\
A_{n,1} & \cdots & A_{n,n}
\end{pmatrix}
\]

whose entries $A_{j,k}$ are defined by

\[Tv_k = A_{1,k}v_1 + \cdots + A_{n,k}v_n.\]
Definition: *matrix of an operator, $\mathcal{M}(T)$*

Suppose $T \in \mathcal{L}(V)$ and v_1, \ldots, v_n is a basis of V. The *matrix of T* with respect to this basis is the n-by-n matrix

$$
\mathcal{M}(T) = \begin{pmatrix}
A_{1,1} & \ldots & A_{1,n} \\
\vdots & & \vdots \\
A_{n,1} & \ldots & A_{n,n}
\end{pmatrix}
$$

whose entries $A_{j,k}$ are defined by

$$
Tv_k = A_{1,k}v_1 + \cdots + A_{n,k}v_n.
$$

If the basis is not clear from the context, then the notation $\mathcal{M}(T, (v_1, \ldots, v_n))$ is used.
Definition: **matrix of an operator, \(\mathcal{M}(T) \)**

Suppose \(T \in \mathcal{L}(V) \) and \(v_1, \ldots, v_n \) is a basis of \(V \). The matrix of \(T \) with respect to this basis is the \(n \)-by-\(n \) matrix

\[
\mathcal{M}(T) = \begin{pmatrix}
A_{1,1} & \cdots & A_{1,n} \\
\vdots & & \vdots \\
A_{n,1} & \cdots & A_{n,n}
\end{pmatrix}
\]

whose entries \(A_{j,k} \) are defined by

\[Tv_k = A_{1,k}v_1 + \cdots + A_{n,k}v_n.\]

If the basis is not clear from the context, then the notation \(\mathcal{M}(T, (v_1, \ldots, v_n)) \) is used.

Suppose \(T \in \mathcal{L}(V) \), then
- \(\mathcal{M}(T) \) is computed using just one basis;
Definition: matrix of an operator, \(\mathcal{M}(T) \)

Suppose \(T \in \mathcal{L}(V) \) and \(v_1, \ldots, v_n \) is a basis of \(V \). The *matrix of \(T \) with respect to this basis* is the \(n \)-by-\(n \) matrix

\[
\mathcal{M}(T) = \begin{pmatrix}
A_{1,1} & \cdots & A_{1,n} \\
\vdots & & \vdots \\
A_{n,1} & \cdots & A_{n,n}
\end{pmatrix}
\]

whose entries \(A_{j,k} \) are defined by

\[
Tv_k = A_{1,k}v_1 + \cdots + A_{n,k}v_n.
\]

If the basis is not clear from the context, then the notation \(\mathcal{M}(T, (v_1, \ldots, v_n)) \) is used.

Suppose \(T \in \mathcal{L}(V) \), then

- \(\mathcal{M}(T) \) is computed using just one basis;
- \(\mathcal{M}(T) \) is a *square* matrix.
Suppose $T \in \mathcal{L}(V)$ and v_1, \ldots, v_n is a basis of V. The *matrix of T with respect to this basis* is the n-by-n matrix

\[
M(T) = \begin{pmatrix}
A_{1,1} & \cdots & A_{1,n} \\
\vdots & & \vdots \\
A_{n,1} & \cdots & A_{n,n}
\end{pmatrix}
\]

whose entries $A_{j,k}$ are defined by

\[
Tv_k = A_{1,k}v_1 + \cdots + A_{n,k}v_n.
\]

If the basis is not clear from the context, then the notation $M(T, (v_1, \ldots, v_n))$ is used.

Suppose $T \in \mathcal{L}(V)$, then

- $M(T)$ is computed using just one basis;
- $M(T)$ is a **square** matrix.

Example: Define $T \in \mathcal{L}(\mathbb{R}^3)$ by

\[
T(x, y, z) = (2x+y, 5y+3z, 8z).
\]

Then

\[
M(T) = \begin{pmatrix}
2 & 1 & 0 \\
0 & 5 & 3 \\
0 & 0 & 8
\end{pmatrix}
\]

with respect to the standard basis of \mathbb{R}^3.

Definition: matrix of an operator, $M(T)$

Suppose $T \in \mathcal{L}(V)$ and v_1, \ldots, v_n is a basis of V. The *matrix of T with respect to this basis* is the n-by-n matrix

\[
M(T) = \begin{pmatrix}
A_{1,1} & \cdots & A_{1,n} \\
\vdots & & \vdots \\
A_{n,1} & \cdots & A_{n,n}
\end{pmatrix}
\]

whose entries $A_{j,k}$ are defined by

\[
Tv_k = A_{1,k}v_1 + \cdots + A_{n,k}v_n.
\]

If the basis is not clear from the context, then the notation $M(T, (v_1, \ldots, v_n))$ is used.
Upper-Triangular Matrices

Definition: *diagonal of matrix*

The *diagonal* of a square matrix consists of the entries along the line from the upper left corner to the bottom right corner.

Example:

\[
\begin{pmatrix}
2 & 1 & 0 \\
0 & 5 & 3 \\
0 & 0 & 8
\end{pmatrix}
\]

Conditions for upper-triangular matrix

Suppose \(T \in \mathcal{L}(V) \) and \(v_1, \ldots, v_n \) is a basis of \(V \). Then the following are equivalent:

1. The matrix of \(T \) with respect to \(v_1, \ldots, v_n \) is upper triangular;
2. \(T v_j \in \text{span}(v_1, \ldots, v_j) \) for each \(j = 1, \ldots, n \);
3. \(\text{span}(v_1, \ldots, v_j) \) is invariant under \(T \) for each \(j = 1, \ldots, n \).
Upper-Triangular Matrices

Definition: diagonal of matrix

The *diagonal* of a square matrix consists of the entries along the line from the upper left corner to the bottom right corner.

Definition: upper-triangular matrix

A matrix is called *upper triangular* if all the entries below the diagonal equal 0.

Example:

$$ \begin{pmatrix} 2 & 1 & 0 \\ 0 & 5 & 3 \\ 0 & 0 & 8 \end{pmatrix} $$

Conditions for upper-triangular matrix

Suppose $T \in L(V)$ and v_1, \ldots, v_n is a basis of V. Then the following are equivalent:

1. The matrix of T with respect to v_1, \ldots, v_n is upper triangular;
2. $Tv_j \in \text{span}(v_1, \ldots, v_j)$ for each $j = 1, \ldots, n$;
3. $\text{span}(v_1, \ldots, v_j)$ is invariant under T for each $j = 1, \ldots, n$.
Upper-Triangular Matrices

Definition: diagonal of matrix

The *diagonal* of a square matrix consists of the entries along the line from the upper left corner to the bottom right corner.

Definition: upper-triangular matrix

A matrix is called *upper triangular* if all the entries below the diagonal equal 0.

Example:

$$\begin{pmatrix} 2 & 1 & 0 \\ 0 & 5 & 3 \\ 0 & 0 & 8 \end{pmatrix}$$

Conditions for upper-triangular matrix

Suppose $T \in \mathcal{L}(V)$ and v_1, \ldots, v_n is a basis of V. Then the following are equivalent:

- the matrix of T with respect to v_1, \ldots, v_n is upper triangular;
- $Tv_j \in \text{span}(v_1, \ldots, v_j)$ for each $j = 1, \ldots, n$;
- $\text{span}(v_1, \ldots, v_j)$ is invariant under T for each $j = 1, \ldots, n$.

Over \mathbb{C}, every operator has an upper-triangular matrix

Suppose V is a finite-dimensional complex vector space and $T \in \mathcal{L}(V)$. Then T has an upper-triangular matrix with respect to some basis of V.

\[
\mathcal{M}(T) = \begin{pmatrix}
\lambda_1 & * \\
& \lambda_2 \\
& & \ddots \\
& & & \lambda_n
\end{pmatrix}
\]

The first basis vector v_1 must be an eigenvector of T with eigenvalue λ_1.
Over \mathbb{C}, every operator has an upper-triangular matrix

Suppose V is a finite-dimensional complex vector space and $T \in \mathcal{L}(V)$. Then T has an upper-triangular matrix with respect to some basis of V.

\[\mathcal{M}(T) = \begin{pmatrix} \lambda_1 & * \\ \lambda_2 & \ddots \\ 0 & \cdots & \lambda_n \end{pmatrix} \]

The first basis vector v_1 must be an eigenvector of T with eigenvalue λ_1.

Over \mathbb{C}, Every Operator has Upper-Triangular Matrix
Determination of eigenvalues from upper-triangular matrix

Suppose $T \in \mathcal{L}(V)$ has an upper-triangular matrix with respect to some basis of V. Then the eigenvalues of T are precisely the entries on the diagonal of that upper-triangular matrix.

$$
\mathcal{M}(T) = \begin{pmatrix}
\lambda_1 & * \\
0 & \lambda_2 \\
& \ldots \\
0 & 0 & \ldots & \lambda_n
\end{pmatrix}
$$

Example: Define $T \in \mathcal{L}(\mathbb{R}^3)$ by $T(x, y, z) = (2x + y, 5y + 3z, 8z)$. Then $M(T) = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 5 & 3 \\ 0 & 0 & 8 \end{pmatrix}$ with respect to the standard basis of \mathbb{R}^3. Thus the eigenvalues of T are $2, 5,$ and 8.
Determination of eigenvalues from upper-triangular matrix

Suppose $T \in \mathcal{L}(V)$ has an upper-triangular matrix with respect to some basis of V. Then the eigenvalues of T are precisely the entries on the diagonal of that upper-triangular matrix.

$$\mathcal{M}(T) = \begin{pmatrix} \lambda_1 & * & \cdots & \star \\ \lambda_2 & \cdots & \star \\ \vdots & \ddots & \ddots & \star \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix}$$

Example: Define $T \in \mathcal{L}(\mathbb{R}^3)$ by

$T(x, y, z) = (2x+y, 5y+3z, 8z)$.

Then

$$\mathcal{M}(T) = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 5 & 3 \\ 0 & 0 & 8 \end{pmatrix}$$

with respect to the standard basis of \mathbb{R}^3.

Thus the eigenvalues of T are 2, 5, and 8.
Determination of eigenvalues from upper-triangular matrix

Suppose \(T \in \mathcal{L}(V) \) has an upper-triangular matrix with respect to some basis of \(V \). Then the eigenvalues of \(T \) are precisely the entries on the diagonal of that upper-triangular matrix.

\[
\mathcal{M}(T) = \begin{pmatrix}
\lambda_1 & & \\
& \lambda_2 & \\
& & \ddots \\
0 & & \lambda_n
\end{pmatrix}
\]

Example: Define \(T \in \mathcal{L}(\mathbb{R}^3) \) by

\[
T(x, y, z) = (2x+y, 5y+3z, 8z).
\]

Then

\[
\mathcal{M}(T) = \begin{pmatrix}
2 & 1 & 0 \\
0 & 5 & 3 \\
0 & 0 & 8
\end{pmatrix}
\]

with respect to the standard basis of \(\mathbb{R}^3 \).

Thus the eigenvalues of \(T \) are 2, 5, and 8.