Polar Decomposition and SVD, part 2: Singular Value Decomposition

Definition: singular values

Suppose $T \in \mathcal{L}(V)$. The singular values of T are the eigenvalues of $\sqrt{T^*T}$, with each eigenvalue λ listed

 $\dim \operatorname{null}(\sqrt{T^*T} - \lambda I)$

times.

Definition: singular values

Suppose $T \in \mathcal{L}(V)$. The singular values of T are the eigenvalues of $\sqrt{T^*T}$, with each eigenvalue λ listed dim null $(\sqrt{T^*T} - \lambda I)$

times.

The singular values of *T* are nonnegative numbers, because they are eigenvalues of the positive operator $\sqrt{T^*T}$.

Definition: singular values

Suppose $T \in \mathcal{L}(V)$. The singular values of T are the eigenvalues of $\sqrt{T^*T}$, with each eigenvalue λ listed $\dim \operatorname{null}(\sqrt{T^*T} - \lambda I)$

times.

The singular values of *T* are nonnegative numbers, because they are eigenvalues of the positive operator $\sqrt{T^*T}$.

Each operator on V has $\dim V$ singular values.

Definition: singular values

Suppose $T \in \mathcal{L}(V)$. The singular values of T are the eigenvalues of $\sqrt{T^*T}$, with each eigenvalue λ listed $\dim \operatorname{null}(\sqrt{T^*T} - \lambda I)$

times.

The singular values of *T* are nonnegative numbers, because they are eigenvalues of the positive operator $\sqrt{T^*T}$.

Each operator on V has $\dim V$ singular values.

Example:Define $T \in \mathcal{L}(\mathbf{F}^4)$ by

 $T(z_1, z_2, z_3, z_4) = (0, 3z_1, 2z_2, -3z_4).$

Definition: singular values

Suppose $T \in \mathcal{L}(V)$. The singular values of T are the eigenvalues of $\sqrt{T^*T}$, with each eigenvalue λ listed $\dim \operatorname{null}(\sqrt{T^*T} - \lambda I)$

times.

The singular values of *T* are nonnegative numbers, because they are eigenvalues of the positive operator $\sqrt{T^*T}$.

Each operator on V has $\dim V$ singular values.

Example:Define $T \in \mathcal{L}(\mathbf{F}^4)$ by

$$T(z_1, z_2, z_3, z_4) = (0, 3z_1, 2z_2, -3z_4).$$

A calculation shows that

 $T^*T(z_1, z_2, z_3, z_4) = (9z_1, 4z_2, 0, 9z_4).$

Definition: singular values

Suppose $T \in \mathcal{L}(V)$. The singular values of T are the eigenvalues of $\sqrt{T^*T}$, with each eigenvalue λ listed $\dim \operatorname{null}(\sqrt{T^*T} - \lambda I)$

times.

The singular values of *T* are nonnegative numbers, because they are eigenvalues of the positive operator $\sqrt{T^*T}$.

Each operator on V has $\dim V$ singular values.

Example:Define $T \in \mathcal{L}(\mathbf{F}^4)$ by

 $T(z_1, z_2, z_3, z_4) = (0, 3z_1, 2z_2, -3z_4).$

A calculation shows that

 $T^*T(z_1, z_2, z_3, z_4) = (9z_1, 4z_2, 0, 9z_4).$

Thus

$$\sqrt{T^*T}(z_1, z_2, z_3, z_4) = (3z_1, 2z_2, 0, 3z_4).$$

Definition: singular values

Suppose $T \in \mathcal{L}(V)$. The singular values of T are the eigenvalues of $\sqrt{T^*T}$, with each eigenvalue λ listed $\dim \operatorname{null}(\sqrt{T^*T} - \lambda I)$

times.

The singular values of *T* are nonnegative numbers, because they are eigenvalues of the positive operator $\sqrt{T^*T}$.

Each operator on V has $\dim V$ singular values.

Example:Define $T \in \mathcal{L}(\mathbf{F}^4)$ by

 $T(z_1, z_2, z_3, z_4) = (0, 3z_1, 2z_2, -3z_4).$

A calculation shows that

 $T^*T(z_1, z_2, z_3, z_4) = (9z_1, 4z_2, 0, 9z_4).$

Thus

$$\sqrt{T^*T}(z_1, z_2, z_3, z_4) = (3z_1, 2z_2, 0, 3z_4).$$

The eigenvalues of $\sqrt{T^*T}$ are 3, 2, 0 and dim null $(\sqrt{T^*T} - 3I) = 2$, dim null $(\sqrt{T^*T} - 2I) = 1$, dim null $\sqrt{T^*T} = 1$.

Definition: singular values

Suppose $T \in \mathcal{L}(V)$. The singular values of T are the eigenvalues of $\sqrt{T^*T}$, with each eigenvalue λ listed $\dim \operatorname{null}(\sqrt{T^*T} - \lambda I)$

times.

The singular values of *T* are nonnegative numbers, because they are eigenvalues of the positive operator $\sqrt{T^*T}$.

Each operator on V has $\dim V$ singular values.

Example:Define $T \in \mathcal{L}(\mathbf{F}^4)$ by

 $T(z_1, z_2, z_3, z_4) = (0, 3z_1, 2z_2, -3z_4).$

A calculation shows that

 $T^*T(z_1, z_2, z_3, z_4) = (9z_1, 4z_2, 0, 9z_4).$

Thus

$$\sqrt{T^*T}(z_1, z_2, z_3, z_4) = (3z_1, 2z_2, 0, 3z_4).$$

The eigenvalues of $\sqrt{T^*T}$ are 3, 2, 0 and dim null $(\sqrt{T^*T} - 3I) = 2$, dim null $(\sqrt{T^*T} - 2I) = 1$, dim null $\sqrt{T^*T} = 1$.

Singular Value Decomposition

Suppose $T \in \mathcal{L}(V)$ has singular values s_1, \ldots, s_n . Then there exist orthonormal bases e_1, \ldots, e_n and f_1, \ldots, f_n of V such that

 $Tv = s_1 \langle v, e_1 \rangle f_1 + \dots + s_n \langle v, e_n \rangle f_n$

for every $v \in V$.

Singular Value Decomposition

Suppose $T \in \mathcal{L}(V)$ has singular values s_1, \ldots, s_n . Then there exist orthonormal bases e_1, \ldots, e_n and f_1, \ldots, f_n of V such that

 $Tv = s_1 \langle v, e_1 \rangle f_1 + \cdots + s_n \langle v, e_n \rangle f_n$

for every $v \in V$.

With notation as in the statement of the Singular Value Decomposition,

$$Te_j = s_j f_j$$

for each *j*.

Singular Value Decomposition

Suppose $T \in \mathcal{L}(V)$ has singular values s_1, \ldots, s_n . Then there exist orthonormal bases e_1, \ldots, e_n and f_1, \ldots, f_n of V such that

$$Tv = s_1 \langle v, e_1 \rangle f_1 + \cdots + s_n \langle v, e_n \rangle f_n$$

for every $v \in V$.

With notation as in the statement of the Singular Value Decomposition,

$$Te_j = s_j f_j$$

for each *j*. Thus

$$\mathcal{A}ig(T,(e_1,\ldots,e_n),(f_1,\ldots,f_n)ig) = igg(egin{array}{cc} s_1 & 0 \ & \ddots & \ 0 & s_n \end{array}igg).$$

Singular Value Decomposition

Suppose $T \in \mathcal{L}(V)$ has singular values s_1, \ldots, s_n . Then there exist orthonormal bases e_1, \ldots, e_n and f_1, \ldots, f_n of V such that

 $Tv = s_1 \langle v, e_1 \rangle f_1 + \dots + s_n \langle v, e_n \rangle f_n$

for every $v \in V$.

Singular Value Decomposition

Suppose $T \in \mathcal{L}(V)$ has singular values s_1, \ldots, s_n . Then there exist orthonormal bases e_1, \ldots, e_n and f_1, \ldots, f_n of V such that

 $Tv = s_1 \langle v, e_1 \rangle f_1 + \dots + s_n \langle v, e_n \rangle f_n$ for every $v \in V$.

Proof By the Spectral Theorem, there is an orthonormal basis e_1, \ldots, e_n of *V* such that $\sqrt{T^*T}e_j = s_je_j$ for $j = 1, \ldots, n$.

Singular Value Decomposition

Suppose $T \in \mathcal{L}(V)$ has singular values s_1, \ldots, s_n . Then there exist orthonormal bases e_1, \ldots, e_n and f_1, \ldots, f_n of V such that

$$Tv = s_1 \langle v, e_1 \rangle f_1 + \dots + s_n \langle v, e_n \rangle f_n$$

or every $v \in V$.

fc

Proof By the Spectral Theorem, there is an orthonormal basis e_1, \ldots, e_n of *V* such that $\sqrt{T^*T}e_j = s_je_j$ for $j = 1, \ldots, n$. Now

$$v = \langle v, e_1 \rangle e_1 + \dots + \langle v, e_n \rangle e_n$$
 for every $v \in V$.

Singular Value Decomposition

Suppose $T \in \mathcal{L}(V)$ has singular values s_1, \ldots, s_n . Then there exist orthonormal bases e_1, \ldots, e_n and f_1, \ldots, f_n of V such that

$$Tv = s_1 \langle v, e_1 \rangle f_1 + \dots + s_n \langle v, e_n \rangle f_n$$

for every $v \in V$.

Proof By the Spectral Theorem, there is an orthonormal basis e_1, \ldots, e_n of *V* such that $\sqrt{T^*T}e_j = s_je_j$ for $j = 1, \ldots, n$. Now

 $v = \langle v, e_1 \rangle e_1 + \dots + \langle v, e_n \rangle e_n$ for every $v \in V$.

Apply $\sqrt{T^*T}$ to both sides of this equation, getting

$$\sqrt{T^*T}v = s_1 \langle v, e_1 \rangle e_1 + \dots + s_n \langle v, e_n \rangle e_n$$

for every $v \in V$.

Singular Value Decomposition

Suppose $T \in \mathcal{L}(V)$ has singular values s_1, \ldots, s_n . Then there exist orthonormal bases e_1, \ldots, e_n and f_1, \ldots, f_n of V such that

$$Tv = s_1 \langle v, e_1 \rangle f_1 + \dots + s_n \langle v, e_n \rangle f_n$$

for every $v \in V$.

Proof By the Spectral Theorem, there is an orthonormal basis e_1, \ldots, e_n of *V* such that $\sqrt{T^*T}e_j = s_je_j$ for $j = 1, \ldots, n$. Now

$$v = \langle v, e_1 \rangle e_1 + \dots + \langle v, e_n \rangle e_n$$

for every $v \in V$.

Apply $\sqrt{T^*T}$ to both sides of this equation, getting

$$\sqrt{T^*T}v = s_1 \langle v, e_1 \rangle e_1 + \dots + s_n \langle v, e_n \rangle e_n$$

for every $v \in V$. By the Polar Decomposition, there is an isometry $S \in \mathcal{L}(V)$ such that $T = S\sqrt{T^*T}$.

Singular Value Decomposition

Suppose $T \in \mathcal{L}(V)$ has singular values s_1, \ldots, s_n . Then there exist orthonormal bases e_1, \ldots, e_n and f_1, \ldots, f_n of V such that

$$Tv = s_1 \langle v, e_1 \rangle f_1 + \dots + s_n \langle v, e_n \rangle f_n$$

for every $v \in V$.

Proof By the Spectral Theorem, there is an orthonormal basis e_1, \ldots, e_n of *V* such that $\sqrt{T^*T}e_j = s_je_j$ for $j = 1, \ldots, n$. Now

$$v = \langle v, e_1 \rangle e_1 + \dots + \langle v, e_n \rangle e_n$$
 for every $v \in V$.

Apply $\sqrt{T^*T}$ to both sides of this equation, getting

 $\sqrt{T^*T}v = s_1 \langle v, e_1 \rangle e_1 + \dots + s_n \langle v, e_n \rangle e_n$

for every $v \in V$. By the Polar Decomposition, there is an isometry $S \in \mathcal{L}(V)$ such that $T = S\sqrt{T^*T}$. Apply *S* to both sides of the equation above, getting

 $Tv = s_1 \langle v, e_1 \rangle Se_1 + \cdots + s_n \langle v, e_n \rangle Se_n$

for every $v \in V$.

Singular Value Decomposition

Suppose $T \in \mathcal{L}(V)$ has singular values s_1, \ldots, s_n . Then there exist orthonormal bases e_1, \ldots, e_n and f_1, \ldots, f_n of V such that

$$Tv = s_1 \langle v, e_1 \rangle f_1 + \dots + s_n \langle v, e_n \rangle f_n$$

for every $v \in V$.

Proof By the Spectral Theorem, there is an orthonormal basis e_1, \ldots, e_n of V such that $\sqrt{T^*T}e_j = s_je_j$ for $j = 1, \ldots, n$. Now

$$v = \langle v, e_1 \rangle e_1 + \dots + \langle v, e_n \rangle e_n$$
 for every $v \in V$.

Apply $\sqrt{T^*T}$ to both sides of this equation, getting

$$\sqrt{T^*T}v = s_1 \langle v, e_1 \rangle e_1 + \dots + s_n \langle v, e_n \rangle e_n$$

for every $v \in V$. By the Polar Decomposition, there is an isometry $S \in \mathcal{L}(V)$ such that $T = S\sqrt{T^*T}$. Apply *S* to both sides of the equation above, getting

$$Tv = s_1 \langle v, e_1 \rangle Se_1 + \dots + s_n \langle v, e_n \rangle Se_n$$

for every $v \in V$. For each j, let $f_j = Se_j$. Because S is an isometry, f_1, \ldots, f_n is an orthonormal basis of V.

Singular Value Decomposition

Suppose $T \in \mathcal{L}(V)$ has singular values s_1, \ldots, s_n . Then there exist orthonormal bases e_1, \ldots, e_n and f_1, \ldots, f_n of V such that

$$Tv = s_1 \langle v, e_1 \rangle f_1 + \dots + s_n \langle v, e_n \rangle f_n$$

for every $v \in V$.

Proof By the Spectral Theorem, there is an orthonormal basis e_1, \ldots, e_n of *V* such that $\sqrt{T^*T}e_j = s_je_j$ for $j = 1, \ldots, n$. Now

$$v = \langle v, e_1 \rangle e_1 + \dots + \langle v, e_n \rangle e_n$$

for every $v \in V$.

Apply $\sqrt{T^*T}$ to both sides of this equation, getting

$$\sqrt{T^*T}v = s_1 \langle v, e_1 \rangle e_1 + \dots + s_n \langle v, e_n \rangle e_n$$

for every $v \in V$. By the Polar Decomposition, there is an isometry $S \in \mathcal{L}(V)$ such that $T = S\sqrt{T^*T}$. Apply *S* to both sides of the equation above, getting

 $Tv = s_1 \langle v, e_1 \rangle Se_1 + \cdots + s_n \langle v, e_n \rangle Se_n$

for every $v \in V$. For each j, let $f_j = Se_j$. Because S is an isometry, f_1, \ldots, f_n is an orthonormal basis of V. The equation above now becomes

 $Tv = s_1 \langle v, e_1 \rangle f_1 + \cdots + s_n \langle v, e_n \rangle f_n$

for every $v \in V$, completing the proof.

Singular values without taking square root of an operator

Suppose $T \in \mathcal{L}(V)$. Then the singular values of *T* are the nonnegative square roots of the eigenvalues of T^*T , with each eigenvalue λ listed

 $\dim \operatorname{null}(T^*T - \lambda I)$

times.

Singular values without taking square root of an operator

Suppose $T \in \mathcal{L}(V)$. Then the singular values of T are the nonnegative square roots of the eigenvalues of T^*T , with each eigenvalue λ listed

 $\dim \operatorname{null}(T^*T - \lambda I)$

times.

Example:Define $T \in \mathcal{L}(\mathbf{F}^4)$ by

 $T(z_1, z_2, z_3, z_4) = (0, 3z_1, 2z_2, -3z_4).$

Singular values without taking square root of an operator

Suppose $T \in \mathcal{L}(V)$. Then the singular values of T are the nonnegative square roots of the eigenvalues of T^*T , with each eigenvalue λ listed

 $\dim \operatorname{null}(T^*T - \lambda I)$

times.

Example:Define $T \in \mathcal{L}(\mathbf{F}^4)$ by

 $T(z_1, z_2, z_3, z_4) = (0, 3z_1, 2z_2, -3z_4).$

A calculation shows that

 $T^*T(z_1, z_2, z_3, z_4) = (9z_1, 4z_2, 0, 9z_4).$

Singular values without taking square root of an operator

Suppose $T \in \mathcal{L}(V)$. Then the singular values of T are the nonnegative square roots of the eigenvalues of T^*T , with each eigenvalue λ listed

 $\dim \operatorname{null}(T^*T - \lambda I)$

times.

Example:Define $T \in \mathcal{L}(\mathbf{F}^4)$ by

 $T(z_1, z_2, z_3, z_4) = (0, 3z_1, 2z_2, -3z_4).$

A calculation shows that

 $T^*T(z_1, z_2, z_3, z_4) = (9z_1, 4z_2, 0, 9z_4).$

The eigenvalues of T^*T are 9, 4, 0 and

 $\dim \operatorname{null}(T^*T - 9I) = 2,$ $\dim \operatorname{null}(T^*T - 4I) = 1,$ $\dim \operatorname{null}(T^*T - 4I) = 1,$

 $\dim \operatorname{null} T^*T = 1.$

Singular values without taking square root of an operator

Suppose $T \in \mathcal{L}(V)$. Then the singular values of T are the nonnegative square roots of the eigenvalues of T^*T , with each eigenvalue λ listed

 $\dim \operatorname{null}(T^*T - \lambda I)$

times.

Example:Define $T \in \mathcal{L}(\mathbf{F}^4)$ by

 $T(z_1, z_2, z_3, z_4) = (0, 3z_1, 2z_2, -3z_4).$

A calculation shows that

 $T^*T(z_1, z_2, z_3, z_4) = (9z_1, 4z_2, 0, 9z_4).$

The eigenvalues of T^*T are 9, 4, 0 and

 $\dim \operatorname{null}(T^*T - 9I) = 2,$ $\dim \operatorname{null}(T^*T - 4I) = 1,$ $\dim \operatorname{null}T^*T = 1$

Hence the singular values of T are

3, 3, 2, 0.

Singular values without taking square root of an operator

Suppose $T \in \mathcal{L}(V)$. Then the singular values of T are the nonnegative square roots of the eigenvalues of T^*T , with each eigenvalue λ listed

 $\dim \operatorname{null}(T^*T - \lambda I)$

times.

Example:Define $T \in \mathcal{L}(\mathbf{F}^4)$ by

 $T(z_1, z_2, z_3, z_4) = (0, 3z_1, 2z_2, -3z_4).$

A calculation shows that

 $T^*T(z_1, z_2, z_3, z_4) = (9z_1, 4z_2, 0, 9z_4).$

The eigenvalues of T^*T are 9, 4, 0 and

 $\dim \operatorname{null}(T^*T - 9I) = 2,$ $\dim \operatorname{null}(T^*T - 4I) = 1,$ $\dim \operatorname{null}T^*T = 1$

Singular values without taking square root of an operator

Suppose $T \in \mathcal{L}(V)$. Then the singular values of T are the nonnegative square roots of the eigenvalues of T^*T , with each eigenvalue λ listed

 $\dim \operatorname{null}(T^*T - \lambda I)$

times.

Example:Define $T \in \mathcal{L}(\mathbf{F}^4)$ by

 $T(z_1, z_2, z_3, z_4) = (0, 3z_1, 2z_2, -3z_4).$

A calculation shows that

 $T^*T(z_1, z_2, z_3, z_4) = (9z_1, 4z_2, 0, 9z_4).$

The eigenvalues of T^*T are 9, 4, 0 and

 $\dim \operatorname{null}(T^*T - 9I) = 2,$ $\dim \operatorname{null}(T^*T - 4I) = 1,$

 $\dim \operatorname{null} T^*T = 1.$

Singular values without taking square root of an operator

Suppose $T \in \mathcal{L}(V)$. Then the singular values of T are the nonnegative square roots of the eigenvalues of T^*T , with each eigenvalue λ listed

 $\dim \operatorname{null}(T^*T - \lambda I)$

times.

Example:Define $T \in \mathcal{L}(\mathbf{F}^4)$ by

 $T(z_1, z_2, z_3, z_4) = (0, 3z_1, 2z_2, -3z_4).$

A calculation shows that

 $T^*T(z_1, z_2, z_3, z_4) = (9z_1, 4z_2, 0, 9z_4).$

The eigenvalues of T^*T are 9, 4, 0 and

 $\dim \operatorname{null}(T^*T - 9I) = 2,$ $\dim \operatorname{null}(T^*T - 4I) = 1,$ $\dim \operatorname{null}T^*T = 1$

• Suppose $T \in \mathcal{L}(V)$ is self-adjoint. Prove that the singular values of T equal the absolute values of the eigenvalues of T, repeated appropriately.

- Suppose $T \in \mathcal{L}(V)$ is self-adjoint. Prove that the singular values of T equal the absolute values of the eigenvalues of T, repeated appropriately.
- Suppose $T \in \mathcal{L}(V)$. Prove that T and T^* have the same singular values.

- Suppose $T \in \mathcal{L}(V)$ is self-adjoint. Prove that the singular values of T equal the absolute values of the eigenvalues of T, repeated appropriately.
- Suppose *T* ∈ *L*(*V*). Prove that *T* and *T** have the same singular values.
- Suppose $T \in \mathcal{L}(V)$. Prove that T is invertible if and only if 0 is not a singular value of T.

- Suppose $T \in \mathcal{L}(V)$ is self-adjoint. Prove that the singular values of T equal the absolute values of the eigenvalues of T, repeated appropriately.
- Suppose *T* ∈ *L*(*V*). Prove that *T* and *T** have the same singular values.
- Suppose $T \in \mathcal{L}(V)$. Prove that T is invertible if and only if 0 is not a singular value of T.
- Suppose $T \in \mathcal{L}(V)$. Prove that dim range T equals the number of nonzero singular values of T.

- Suppose *T* ∈ *L*(*V*) is self-adjoint. Prove that the singular values of *T* equal the absolute values of the eigenvalues of *T*, repeated appropriately.
- Suppose *T* ∈ *L*(*V*). Prove that *T* and *T** have the same singular values.
- Suppose $T \in \mathcal{L}(V)$. Prove that T is invertible if and only if 0 is not a singular value of T.
- Suppose $T \in \mathcal{L}(V)$. Prove that dim range T equals the number of nonzero singular values of T.

• Suppose $S \in \mathcal{L}(V)$. Prove that *S* is an isometry if and only if all the singular values of *S* equal 1.

- Suppose *T* ∈ *L*(*V*) is self-adjoint. Prove that the singular values of *T* equal the absolute values of the eigenvalues of *T*, repeated appropriately.
- Suppose *T* ∈ *L*(*V*). Prove that *T* and *T** have the same singular values.
- Suppose $T \in \mathcal{L}(V)$. Prove that T is invertible if and only if 0 is not a singular value of T.
- Suppose $T \in \mathcal{L}(V)$. Prove that dim range T equals the number of nonzero singular values of T.

- Suppose S ∈ L(V). Prove that S is an isometry if and only if all the singular values of S equal 1.
- Suppose *T* ∈ *L*(*V*). Let ŝ denote the smallest singular value of *T*, and let *s* denote the largest singular value of *T*.

- Suppose *T* ∈ *L*(*V*) is self-adjoint. Prove that the singular values of *T* equal the absolute values of the eigenvalues of *T*, repeated appropriately.
- Suppose *T* ∈ *L*(*V*). Prove that *T* and *T** have the same singular values.
- Suppose $T \in \mathcal{L}(V)$. Prove that T is invertible if and only if 0 is not a singular value of T.
- Suppose $T \in \mathcal{L}(V)$. Prove that dim range T equals the number of nonzero singular values of T.

- Suppose S ∈ L(V). Prove that S is an isometry if and only if all the singular values of S equal 1.
- Suppose *T* ∈ *L*(*V*). Let ŝ denote the smallest singular value of *T*, and let *s* denote the largest singular value of *T*.
 - (a) Prove that $\hat{s} ||v|| \le ||Tv|| \le s ||v||$ for every $v \in V$.

- Suppose *T* ∈ *L*(*V*) is self-adjoint. Prove that the singular values of *T* equal the absolute values of the eigenvalues of *T*, repeated appropriately.
- Suppose *T* ∈ *L*(*V*). Prove that *T* and *T** have the same singular values.
- Suppose $T \in \mathcal{L}(V)$. Prove that T is invertible if and only if 0 is not a singular value of T.
- Suppose $T \in \mathcal{L}(V)$. Prove that dim range T equals the number of nonzero singular values of T.

- Suppose S ∈ L(V). Prove that S is an isometry if and only if all the singular values of S equal 1.
- Suppose *T* ∈ *L*(*V*). Let ŝ denote the smallest singular value of *T*, and let *s* denote the largest singular value of *T*.
 - (a) Prove that $\hat{s} ||v|| \le ||Tv|| \le s ||v||$ for every $v \in V$.
 - (b) Suppose λ is an eigenvalue of *T*. Prove that $\hat{s} \le |\lambda| \le s$.

Suppose $T \in \mathcal{L}(V)$ has singular value decomposition given by

 $Tv = s_1 \langle v, e_1 \rangle f_1 + \cdots + s_n \langle v, e_n \rangle f_n$

for every $v \in V$, where s_1, \ldots, s_n are the singular values of T and e_1, \ldots, e_n and f_1, \ldots, f_n are orthonormal bases of V.

Suppose $T \in \mathcal{L}(V)$ has singular value decomposition given by

 $Tv = s_1 \langle v, e_1 \rangle f_1 + \cdots + s_n \langle v, e_n \rangle f_n$

for every $v \in V$, where s_1, \ldots, s_n are the singular values of T and e_1, \ldots, e_n and f_1, \ldots, f_n are orthonormal bases of V.

• Prove that if $v \in V$, then

 $T^*v = s_1 \langle v, f_1 \rangle e_1 + \cdots + s_n \langle v, f_n \rangle e_n.$

Suppose $T \in \mathcal{L}(V)$ has singular value decomposition given by

 $Tv = s_1 \langle v, e_1 \rangle f_1 + \cdots + s_n \langle v, e_n \rangle f_n$

for every $v \in V$, where s_1, \ldots, s_n are the singular values of T and e_1, \ldots, e_n and f_1, \ldots, f_n are orthonormal bases of V.

• Prove that if $v \in V$, then

 $T^*v = s_1 \langle v, f_1 \rangle e_1 + \cdots + s_n \langle v, f_n \rangle e_n.$

• Prove that if $v \in V$, then

 $T^*Tv = s_1^2 \langle v, e_1 \rangle e_1 + \dots + s_n^2 \langle v, e_n \rangle e_n.$

Suppose $T \in \mathcal{L}(V)$ has singular value decomposition given by

 $Tv = s_1 \langle v, e_1 \rangle f_1 + \cdots + s_n \langle v, e_n \rangle f_n$

for every $v \in V$, where s_1, \ldots, s_n are the singular values of T and e_1, \ldots, e_n and f_1, \ldots, f_n are orthonormal bases of V.

• Prove that if $v \in V$, then

 $T^*v = s_1 \langle v, f_1 \rangle e_1 + \cdots + s_n \langle v, f_n \rangle e_n.$

• Prove that if $v \in V$, then

 $T^*Tv = s_1^2 \langle v, e_1 \rangle e_1 + \cdots + s_n^2 \langle v, e_n \rangle e_n.$

• Prove that if $v \in V$, then

$$\sqrt{T^*T}v = s_1 \langle v, e_1 \rangle e_1 + \cdots + s_n \langle v, e_n \rangle e_n.$$

Suppose $T \in \mathcal{L}(V)$ has singular value decomposition given by

 $Tv = s_1 \langle v, e_1 \rangle f_1 + \cdots + s_n \langle v, e_n \rangle f_n$

for every $v \in V$, where s_1, \ldots, s_n are the singular values of T and e_1, \ldots, e_n and f_1, \ldots, f_n are orthonormal bases of V.

• Prove that if $v \in V$, then

$$T^*v = s_1 \langle v, f_1 \rangle e_1 + \cdots + s_n \langle v, f_n \rangle e_n.$$

• Prove that if $v \in V$, then

 $T^*Tv = s_1^2 \langle v, e_1 \rangle e_1 + \dots + s_n^2 \langle v, e_n \rangle e_n.$

• Prove that if $v \in V$, then

$$\sqrt{T^*T}v = s_1 \langle v, e_1 \rangle e_1 + \cdots + s_n \langle v, e_n \rangle e_n.$$

• Suppose *T* is invertible. Prove that if $v \in V$, then $T^{-1}v = \frac{\langle v, f_1 \rangle e_1}{s_1} + \dots + \frac{\langle v, f_n \rangle e_n}{s_n}$ for every $v \in V$.

Linear Algebra Done Right, by Sheldon Axler

