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Suppose T € L(V). The singular
values of T are the eigenvalues
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Example:Define T € L(F*) by
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A calculation shows that
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fis-...f» are orthonormal bases of V. @ Suppose T is invertible. Prove that if

@ Prove thatif v € V, then v eV, then

v,f1)e v, fu)e
T*v = s1(v,fi)er + -+ + su(v,fu)en. Ty = {v.fi)er 4ot (vofu)en

S1 Sn

for every v € V.

@ Prove that if v € V, then

T Ty = slz(v, er)er+-- 45,2 (v, en)en.



Linear Algebra Done Right, by Sheldon Axler

Sheldon Axler

Linear Algebra
Done Right




