\(F \) denotes either \(\mathbb{R} \) or \(\mathbb{C} \).

\(V \) denotes a finite-dimensional inner product space over \(F \).
Definition: *positive operator*

An operator $T \in \mathcal{L}(V)$ is called *positive* if T is self-adjoint and

$$\langle Tv, v \rangle \geq 0$$

for all $v \in V$.

If V is a complex vector space, then the requirement that T is self-adjoint can be dropped from the definition above.

Examples:

- If U is a subspace of V, then the orthogonal projection P_U is a positive operator.
- If $T \in \mathcal{L}(V)$ is self-adjoint and $b, c \in \mathbb{R}$ are such that $b^2 \leq 4c$, then $T^2 + bT + cI$ is a positive operator.
- If $M(T)$ is a diagonal matrix with nonnegative entries on the diagonal, then T is a positive operator.
Definition: *positive operator*

An operator \(T \in \mathcal{L}(V) \) is called *positive* if \(T \) is self-adjoint and

\[
\langle Tv, v \rangle \geq 0
\]

for all \(v \in V \).

If \(V \) is a complex vector space, then the requirement that \(T \) is self-adjoint can be dropped from the definition above.
Definition: positive operator

An operator $T \in \mathcal{L}(V)$ is called positive if T is self-adjoint and

$$\langle Tv, v \rangle \geq 0$$

for all $v \in V$.

If V is a complex vector space, then the requirement that T is self-adjoint can be dropped from the definition above.

Examples:
- If U is a subspace of V, then the orthogonal projection P_U is a positive operator.
Definition: *positive operator*

An operator $T \in \mathcal{L}(V)$ is called *positive* if T is self-adjoint and

$$\langle Tv, v \rangle \geq 0$$

for all $v \in V$.

If V is a complex vector space, then the requirement that T is self-adjoint can be dropped from the definition above.

Examples:

- If U is a subspace of V, then the orthogonal projection P_U is a positive operator.
- If $T \in \mathcal{L}(V)$ is self-adjoint and $b, c \in \mathbb{R}$ are such that $b^2 \leq 4c$, then $T^2 + bT + cI$ is a positive operator.
Definition: **positive operator**

An operator $T \in \mathcal{L}(V)$ is called *positive* if T is self-adjoint and

$$\langle Tv, v \rangle \geq 0$$

for all $v \in V$.

If V is a complex vector space, then the requirement that T is self-adjoint can be dropped from the definition above.

Examples:

- If U is a subspace of V, then the orthogonal projection P_U is a positive operator.
- If $T \in \mathcal{L}(V)$ is self-adjoint and $b, c \in \mathbb{R}$ are such that $b^2 \leq 4c$, then $T^2 + bT + cI$ is a positive operator.
- If $\mathcal{M}(T)$ is a diagonal matrix with nonnegative entries on the diagonal, then T is a positive operator.
Definition: *square root*

An operator R is called a *square root* of an operator T if $R^2 = T$.

Example: If $T \in L(F^3)$ is defined by $T(z_1, z_2, z_3) = (z_3, 0, 0)$, then the operator $R \in L(F^3)$ defined by $R(z_1, z_2, z_3) = (z_2, z_3, 0)$ is a square root of T.

Example: If $T \in L(F^3)$ has matrix $M(T) = \begin{bmatrix} 25 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 9 \end{bmatrix}$, then the operator $R \in L(F^3)$ with matrix $M(R) = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$, is a square root of T.

Square Roots of Operators

Definition: square root

An operator \(R \) is called a *square root* of an operator \(T \) if \(R^2 = T \).

Example: If \(T \in \mathcal{L}(\mathbb{F}^3) \) is defined by
\[
T(z_1, z_2, z_3) = (z_3, 0, 0),
\]
then the operator \(R \in \mathcal{L}(\mathbb{F}^3) \) defined by
\[
R(z_1, z_2, z_3) = (z_2, z_3, 0)
\]
is a square root of \(T \).
Square Roots of Operators

Definition: *square root*

An operator R is called a *square root* of an operator T if $R^2 = T$.

Example: If $T \in \mathcal{L}(\mathbb{F}^3)$ is defined by

$$T(z_1, z_2, z_3) = (z_3, 0, 0),$$

then the operator $R \in \mathcal{L}(\mathbb{F}^3)$ defined by

$$R(z_1, z_2, z_3) = (z_2, z_3, 0)$$

is a square root of T.

Example: If $T \in \mathcal{L}(\mathbb{F}^3)$ has matrix

$$\mathcal{M}(T) = \begin{pmatrix} 25 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 9 \end{pmatrix},$$

then the operator $R \in \mathcal{L}(\mathbb{F}^3)$ with matrix

$$\mathcal{M}(R) = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix},$$

is a square root of T.
Characterization of Positive Operators

Characterization of positive operators

Let $T \in \mathcal{L}(V)$. Then the following are equivalent:

(a) T is positive;
(b) T is self-adjoint and all eigenvalues of T are nonnegative;
(c) T has a positive square root;
(d) T has a self-adjoint square root;
(e) there exists $R \in \mathcal{L}(V)$ such that $T = R^*R$.

Proof
We will prove that (a) \implies (b) \implies (c) \implies (d) \implies (e) \implies (a).

First suppose (a) holds, so that T is positive. Obviously T is self-adjoint (by the definition of a positive operator).

To prove the other condition in (b), suppose λ is an eigenvalue of T.

Let v be an eigenvector of T corresponding to λ. Then

$$0 \leq \langle Tv, v \rangle = \langle \lambda v, v \rangle = \lambda \langle v, v \rangle.$$

Thus λ is a nonnegative number.

Hence (b) holds.
Characterization of positive operators

Let $T \in \mathcal{L}(V)$. Then the following are equivalent:

(a) T is positive;
(b) T is self-adjoint and all eigenvalues of T are nonnegative;
(c) T has a positive square root;
(d) T has a self-adjoint square root;
(e) there exists $R \in \mathcal{L}(V)$ such that $T = R^*R$.

Proof We will prove that $(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (d) \Rightarrow (e) \Rightarrow (a)$.

First suppose (a) holds, so that T is positive. Obviously T is self-adjoint (by the definition of a positive operator). To prove the other condition in (b), suppose λ is an eigenvalue of T. Let v be an eigenvector of T corresponding to λ. Then

$$0 \leq \langle Tv, v \rangle = \langle \lambda v, v \rangle = \lambda \langle v, v \rangle.$$

Thus λ is a nonnegative number. Hence (b) holds.
Characterization of positive operators

Let \(T \in \mathcal{L}(V) \). Then the following are equivalent:

(a) \(T \) is positive;
(b) \(T \) is self-adjoint and all eigenvalues of \(T \) are nonnegative;
(c) \(T \) has a positive square root;
(d) \(T \) has a self-adjoint square root;
(e) there exists \(R \in \mathcal{L}(V) \) such that \(T = R^*R \).

Proof We will prove that
\((a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (d) \Rightarrow (e) \Rightarrow (a) \).

First suppose (a) holds, so that \(T \) is positive. Obviously \(T \) is self-adjoint (by the definition of a positive operator).
Characterization of positive operators

Let $T \in \mathcal{L}(V)$. Then the following are equivalent:

(a) T is positive;
(b) T is self-adjoint and all eigenvalues of T are nonnegative;
(c) T has a positive square root;
(d) T has a self-adjoint square root;
(e) there exists $R \in \mathcal{L}(V)$ such that $T = R^*R$.

Proof We will prove that (a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (d) \Rightarrow (e) \Rightarrow (a).

First suppose (a) holds, so that T is positive. Obviously T is self-adjoint (by the definition of a positive operator).

To prove the other condition in (b), suppose λ is an eigenvalue of T. Then λ is a nonnegative number.
Characterization of Positive Operators

Let $T \in \mathcal{L}(V)$. Then the following are equivalent:

(a) T is positive;
(b) T is self-adjoint and all eigenvalues of T are nonnegative;
(c) T has a positive square root;
(d) T has a self-adjoint square root;
(e) there exists $R \in \mathcal{L}(V)$ such that $T = R^*R$.

Proof. We will prove that
(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (d) \Rightarrow (e) \Rightarrow (a).

First suppose (a) holds, so that T is positive. Obviously T is self-adjoint (by the definition of a positive operator).
To prove the other condition in (b), suppose λ is an eigenvalue of T.
Let v be an eigenvector of T corresponding to λ. Then

$$0 \leq \langle Tv, v \rangle$$
Characterization of Positive Operators

Let $T \in \mathcal{L}(V)$. Then the following are equivalent:

(a) T is positive;
(b) T is self-adjoint and all eigenvalues of T are nonnegative;
(c) T has a positive square root;
(d) T has a self-adjoint square root;
(e) there exists $R \in \mathcal{L}(V)$ such that $T = R^*R$.

Proof

We will prove that

(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (d) \Rightarrow (e) \Rightarrow (a).

First suppose (a) holds, so that T is positive. Obviously T is self-adjoint (by the definition of a positive operator).

To prove the other condition in (b), suppose λ is an eigenvalue of T.

Let v be an eigenvector of T corresponding to λ. Then

$$0 \leq \langle Tv, v \rangle = \langle \lambda v, v \rangle.$$
Characterization of Positive Operators

Let $T \in \mathcal{L}(V)$. Then the following are equivalent:

(a) T is positive;
(b) T is self-adjoint and all eigenvalues of T are nonnegative;
(c) T has a positive square root;
(d) T has a self-adjoint square root;
(e) there exists $R \in \mathcal{L}(V)$ such that $T = R^* R$.

Proof. We will prove that $(a) \implies (b) \implies (c) \implies (d) \implies (e) \implies (a)$.

First suppose (a) holds, so that T is positive. Obviously T is self-adjoint (by the definition of a positive operator). To prove the other condition in (b), suppose λ is an eigenvalue of T. Let v be an eigenvector of T corresponding to λ. Then

\[
0 \leq \langle Tv, v \rangle = \langle \lambda v, v \rangle = \lambda \langle v, v \rangle.
\]
Proof We will prove that (a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (e) ⇒ (a).

First suppose (a) holds, so that T is positive. Obviously T is self-adjoint (by the definition of a positive operator). To prove the other condition in (b), suppose λ is an eigenvalue of T.

Let v be an eigenvector of T corresponding to λ. Then

$$0 \leq \langle Tv, v \rangle = \langle \lambda v, v \rangle = |\lambda| \langle v, v \rangle.$$

Thus λ is a nonnegative number. Hence (b) holds.
Let $T \in \mathcal{L}(V)$. Then the following are equivalent:

(a) T is positive;
(b) T is self-adjoint and all eigenvalues of T are nonnegative;
(c) T has a positive square root;
(d) T has a self-adjoint square root;
(e) there exists $R \in \mathcal{L}(V)$ such that $T = R^*R$.

Now suppose (b) holds, so that T is self-adjoint and all eigenvalues of T are nonnegative. By the Spectral Theorem, there is an orthonormal basis e_1, \ldots, e_n of V consisting of eigenvectors of T. Let $\lambda_1, \ldots, \lambda_n$ be the corresponding eigenvalues. Each $\lambda_j \geq 0$.

Let $R \in \mathcal{L}(V)$ be such that $Re_j = \sqrt{\lambda_j}e_j$ for $j = 1, \ldots, n$. Then R is a positive operator. Furthermore, $R^2 e_j = \lambda_j e_j = Te_j$ for each j, which implies that $R^2 = T$. Thus R is a positive square root of T. Hence (c) holds.
Characterization of Positive Operators

Characterization of positive operators

Let $T \in \mathcal{L}(V)$. Then the following are equivalent:

(a) T is positive;
(b) T is self-adjoint and all eigenvalues of T are nonnegative;
(c) T has a positive square root;
(d) T has a self-adjoint square root;
(e) there exists $R \in \mathcal{L}(V)$ such that $T = R^*R$.

Now suppose (b) holds, so that T is self-adjoint and all eigenvalues of T are nonnegative.
Characterization of Positive Operators

<table>
<thead>
<tr>
<th>Characterization of positive operators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let $T \in \mathcal{L}(V)$. Then the following are equivalent:</td>
</tr>
<tr>
<td>(a) T is positive;</td>
</tr>
<tr>
<td>(b) T is self-adjoint and all eigenvalues of T are nonnegative;</td>
</tr>
<tr>
<td>(c) T has a positive square root;</td>
</tr>
<tr>
<td>(d) T has a self-adjoint square root;</td>
</tr>
<tr>
<td>(e) there exists $R \in \mathcal{L}(V)$ such that $T = R^*R$.</td>
</tr>
</tbody>
</table>

Now suppose (b) holds, so that T is self-adjoint and all eigenvalues of T are nonnegative. By the Spectral Theorem, there is an orthonormal basis e_1, \ldots, e_n of V consisting of eigenvectors of T. Let $\lambda_1, \ldots, \lambda_n$ be the corresponding eigenvalues. Each $\lambda_j \geq 0$.
Characterization of Positive Operators

<table>
<thead>
<tr>
<th>Characterization of positive operators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let $T \in \mathcal{L}(V)$. Then the following are equivalent:</td>
</tr>
<tr>
<td>(a) T is positive;</td>
</tr>
<tr>
<td>(b) T is self-adjoint and all eigenvalues of T are nonnegative;</td>
</tr>
<tr>
<td>(c) T has a positive square root;</td>
</tr>
<tr>
<td>(d) T has a self-adjoint square root;</td>
</tr>
<tr>
<td>(e) there exists $R \in \mathcal{L}(V)$ such that $T = R^* R$.</td>
</tr>
</tbody>
</table>

Now suppose (b) holds, so that T is self-adjoint and all eigenvalues of T are nonnegative. By the Spectral Theorem, there is an orthonormal basis e_1, \ldots, e_n of V consisting of eigenvectors of T. Let $\lambda_1, \ldots, \lambda_n$ be the corresponding eigenvalues. Each $\lambda_j \geq 0$. Let $R \in \mathcal{L}(V)$ be such that

$$Re_j = \sqrt{\lambda_j} e_j$$

for $j = 1, \ldots, n$. Then R is a positive operator.
Characterization of positive operators

Let $T \in \mathcal{L}(V)$. Then the following are equivalent:

(a) T is positive;
(b) T is self-adjoint and all eigenvalues of T are nonnegative;
(c) T has a positive square root;
(d) T has a self-adjoint square root;
(e) there exists $R \in \mathcal{L}(V)$ such that $T = R^*R$.

Now suppose (b) holds, so that T is self-adjoint and all eigenvalues of T are nonnegative. By the Spectral Theorem, there is an orthonormal basis e_1, \ldots, e_n of V consisting of eigenvectors of T. Let $\lambda_1, \ldots, \lambda_n$ be the corresponding eigenvalues. Each $\lambda_j \geq 0$. Let $R \in \mathcal{L}(V)$ be such that

\[Re_j = \sqrt{\lambda_j}e_j \]

for $j = 1, \ldots, n$. Then R is a positive operator. Furthermore,

\[R^2 e_j = \lambda_j e_j = Te_j \]

for each j, which implies that $R^2 = T$.
Let $T \in \mathcal{L}(V)$. Then the following are equivalent:

(a) T is positive;
(b) T is self-adjoint and all eigenvalues of T are nonnegative;
(c) T has a positive square root;
(d) T has a self-adjoint square root;
(e) there exists $R \in \mathcal{L}(V)$ such that $T = R^*R$.

Now suppose (b) holds, so that T is self-adjoint and all eigenvalues of T are nonnegative. By the Spectral Theorem, there is an orthonormal basis e_1, \ldots, e_n of V consisting of eigenvectors of T. Let $\lambda_1, \ldots, \lambda_n$ be the corresponding eigenvalues. Each $\lambda_j \geq 0$. Let $R \in \mathcal{L}(V)$ be such that $Re_j = \sqrt{\lambda_j}e_j$ for $j = 1, \ldots, n$. Then R is a positive operator. Furthermore, $R^2e_j = \lambda_je_j = Te_j$ for each j, which implies that $R^2 = T$.

Thus R is a positive square root of T. Hence (c) holds.
Characterization of positive operators

Let $T \in \mathcal{L}(V)$. Then the following are equivalent:

(a) T is positive;
(b) T is self-adjoint and all eigenvalues of T are nonnegative;
(c) T has a positive square root;
(d) T has a self-adjoint square root;
(e) there exists $R \in \mathcal{L}(V)$ such that $T = R^*R$.

Clearly (c) implies (d) (because, by definition, every positive operator is self-adjoint).

Now suppose (d) holds, meaning that there exists a self-adjoint operator R on V such that $T = R^2$. Then $T = R^*R$ because $R^* = R$. Hence (e) holds.
Characterization of Positive Operators

Let $T \in \mathcal{L}(V)$. Then the following are equivalent:

(a) T is positive;
(b) T is self-adjoint and all eigenvalues of T are nonnegative;
(c) T has a positive square root;
(d) T has a self-adjoint square root;
(e) there exists $R \in \mathcal{L}(V)$ such that $T = R^*R$.

Clearly (c) implies (d) (because, by definition, every positive operator is self-adjoint).
Characterization of positive operators

Let $T \in \mathcal{L}(V)$. Then the following are equivalent:

(a) T is positive;
(b) T is self-adjoint and all eigenvalues of T are nonnegative;
(c) T has a positive square root;
(d) T has a self-adjoint square root;
(e) there exists $R \in \mathcal{L}(V)$ such that $T = R^* R$.

Clearly (c) implies (d) (because, by definition, every positive operator is self-adjoint).

Now suppose (d) holds, meaning that there exists a self-adjoint operator R on V such that $T = R^2$.
Characterization of Positive Operators

<table>
<thead>
<tr>
<th>Characterization of positive operators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let $T \in \mathcal{L}(V)$. Then the following are equivalent:</td>
</tr>
<tr>
<td>(a) T is positive;</td>
</tr>
<tr>
<td>(b) T is self-adjoint and all eigenvalues of T are nonnegative;</td>
</tr>
<tr>
<td>(c) T has a positive square root;</td>
</tr>
<tr>
<td>(d) T has a self-adjoint square root;</td>
</tr>
<tr>
<td>(e) there exists $R \in \mathcal{L}(V)$ such that $T = R^*R$.</td>
</tr>
</tbody>
</table>

Clearly (c) implies (d) (because, by definition, every positive operator is self-adjoint).

Now suppose (d) holds, meaning that there exists a self-adjoint operator R on V such that

$$T = R^2.$$

Then

$$T = R^*R$$

because $R^* = R$. Hence (e) holds.
Characterization of positive operators

Let $T \in \mathcal{L}(V)$. Then the following are equivalent:

(a) T is positive;

(b) T is self-adjoint and all eigenvalues of T are nonnegative;

(c) T has a positive square root;

(d) T has a self-adjoint square root;

(e) there exists $R \in \mathcal{L}(V)$ such that $T = R^*R$.

Finally, suppose (e) holds. Let $R \in \mathcal{L}(V)$ be such that $T = R^*R$. Then

$$T^* = (R^*R)^* = R^*(R^*R)^* = R^*R^* = T.$$

Hence T is self-adjoint.

To complete the proof that (a) holds, note that

$$\langle Tv, v \rangle = \langle R^*Rv, v \rangle = \langle Rv, Rv \rangle \geq 0$$

for every $v \in V$. Thus T is positive.
Characterization of Positive Operators

Characterization of positive operators

Let $T \in \mathcal{L}(V)$. Then the following are equivalent:

(a) T is positive;
(b) T is self-adjoint and all eigenvalues of T are nonnegative;
(c) T has a positive square root;
(d) T has a self-adjoint square root;
(e) there exists $R \in \mathcal{L}(V)$ such that $T = R^*R$.

Finally, suppose (e) holds. Let $R \in \mathcal{L}(V)$ be such that $T = R^*R$. Then

To complete the proof that (a) holds, note that

$$\langle Tv, v \rangle = \langle R^*Rv, v \rangle = \langle Rv, Rv \rangle \geq 0$$

for every $v \in V$. Thus T is positive.
Characterization of positive operators

Let $T \in \mathcal{L}(V)$. Then the following are equivalent:

(a) T is positive;
(b) T is self-adjoint and all eigenvalues of T are nonnegative;
(c) T has a positive square root;
(d) T has a self-adjoint square root;
(e) there exists $R \in \mathcal{L}(V)$ such that $T = R^* R$.

Finally, suppose (e) holds. Let $R \in \mathcal{L}(V)$ be such that $T = R^* R$. Now

$$T^* = (R^* R)^*$$
Let $T \in \mathcal{L}(V)$. Then the following are equivalent:

(a) T is positive;
(b) T is self-adjoint and all eigenvalues of T are nonnegative;
(c) T has a positive square root;
(d) T has a self-adjoint square root;
(e) there exists $R \in \mathcal{L}(V)$ such that $T = R^*R$.

Finally, suppose (e) holds. Let $R \in \mathcal{L}(V)$ be such that $T = R^*R$. Now

$$T^* = (R^*R)^* = R^*(R^*)^*$$
Let $T \in \mathcal{L}(V)$. Then the following are equivalent:

(a) T is positive;
(b) T is self-adjoint and all eigenvalues of T are nonnegative;
(c) T has a positive square root;
(d) T has a self-adjoint square root;
(e) there exists $R \in \mathcal{L}(V)$ such that $T = R^* R$.

Finally, suppose (e) holds. Let $R \in \mathcal{L}(V)$ be such that $T = R^* R$. Now

\[
T^* = (R^* R)^*
\]

\[
= R^* (R^*)^*
\]

\[
= R^* R
\]
Characterization of positive operators

Let $T \in \mathcal{L}(V)$. Then the following are equivalent:

(a) T is positive;
(b) T is self-adjoint and all eigenvalues of T are nonnegative;
(c) T has a positive square root;
(d) T has a self-adjoint square root;
(e) there exists $R \in \mathcal{L}(V)$ such that $T = R^* R$.

Finally, suppose (e) holds. Let $R \in \mathcal{L}(V)$ be such that $T = R^* R$. Now

$$T^* = (R^* R)^*$$
$$= R^* (R^*)^*$$
$$= R^* R$$
$$= T.$$
Characterization of positive operators

Let $T \in \mathcal{L}(V)$. Then the following are equivalent:

(a) T is positive;
(b) T is self-adjoint and all eigenvalues of T are nonnegative;
(c) T has a positive square root;
(d) T has a self-adjoint square root;
(e) there exists $R \in \mathcal{L}(V)$ such that $T = R^*R$.

Finally, suppose (e) holds. Let $R \in \mathcal{L}(V)$ be such that $T = R^*R$. Now

\[
T^* = (R^*R)^*
= R^*(R^*)^*
= R^*R
= T.
\]

Hence T is self-adjoint.
Let $T \in \mathcal{L}(V)$. Then the following are equivalent:

(a) T is positive;
(b) T is self-adjoint and all eigenvalues of T are nonnegative;
(c) T has a positive square root;
(d) T has a self-adjoint square root;
(e) there exists $R \in \mathcal{L}(V)$ such that $T = R^* R$.

Finally, suppose (e) holds. Let $R \in \mathcal{L}(V)$ be such that $T = R^* R$. Now

\[
T^* = (R^* R)^* \\
= R^* (R^*)^* \\
= R^* R \\
= T.
\]

Hence T is self-adjoint. To complete the proof that (a) holds, note that

\[
\langle Tv, v \rangle = \langle R^* Rv, v \rangle
\]
Let $T \in \mathcal{L}(V)$. Then the following are equivalent:

(a) T is positive;
(b) T is self-adjoint and all eigenvalues of T are nonnegative;
(c) T has a positive square root;
(d) T has a self-adjoint square root;
(e) there exists $R \in \mathcal{L}(V)$ such that $T = R^*R$.

Finally, suppose (e) holds. Let $R \in \mathcal{L}(V)$ be such that $T = R^*R$. Now

\[
T^* = (R^*R)^* \\
= R^*(R^*)^* \\
= R^*R \\
= T.
\]

Hence T is self-adjoint. To complete the proof that (a) holds, note that

\[
\langle Tv, v \rangle = \langle R^*Rv, v \rangle \\
= \langle Rv, Rv \rangle
\]
Characterization of Positive Operators

Let $T \in \mathcal{L}(V)$. Then the following are equivalent:

(a) T is positive;
(b) T is self-adjoint and all eigenvalues of T are nonnegative;
(c) T has a positive square root;
(d) T has a self-adjoint square root;
(e) there exists $R \in \mathcal{L}(V)$ such that $T = R^*R$.

Finally, suppose (e) holds. Let $R \in \mathcal{L}(V)$ be such that $T = R^*R$. Now

\[T^* = (R^*R)^* = R^*(R^*)^* = R^*R = T. \]

Hence T is self-adjoint. To complete the proof that (a) holds, note that

\[\langle Tv, v \rangle = \langle R^*Rv, v \rangle = \langle Rv, Rv \rangle \geq 0 \]

for every $v \in V$.
Characterization of positive operators

Let \(T \in \mathcal{L}(V) \). Then the following are equivalent:

(a) \(T \) is positive;
(b) \(T \) is self-adjoint and all eigenvalues of \(T \) are nonnegative;
(c) \(T \) has a positive square root;
(d) \(T \) has a self-adjoint square root;
(e) there exists \(R \in \mathcal{L}(V) \) such that \(T = R^*R \).

Finally, suppose (e) holds. Let \(R \in \mathcal{L}(V) \) be such that \(T = R^*R \). Now

\[
T^* = (R^*R)^* \\
= R^*(R^*)^* \\
= R^*R \\
= T.
\]

Hence \(T \) is self-adjoint. To complete the proof that (a) holds, note that

\[
\langle Tv, v \rangle = \langle R^*Rv, v \rangle \\
= \langle Rv, Rv \rangle \\
\geq 0
\]

for every \(v \in V \). Thus \(T \) is positive. \(\blacksquare \)
Uniqueness of Positive Square Root

Each positive operator has only one positive square root

Every positive operator on V has a unique positive square root.
Each positive operator has only one positive square root

Every positive operator on V has a unique positive square root.

A positive operator can have infinitely many square roots, although only one of them can be positive. For example, the identity operator on V has infinitely many square roots if $\dim V > 1$.