

Notation

- F denotes either R or C.
- V denotes an inner product space over **F**.

Definition: orthonormal

- A list of vectors in V is called *orthonormal* if each vector in the list has norm 1 and is orthogonal to all the other vectors in the list.
- In other words, a list e_1, \ldots, e_m of vectors in *V* is orthonormal if

$$\langle e_j, e_k \rangle = \begin{cases} 1 & \text{if } j = k, \\ 0 & \text{if } j \neq k. \end{cases}$$

Definition: orthonormal

- A list of vectors in V is called *orthonormal* if each vector in the list has norm 1 and is orthogonal to all the other vectors in the list.
- In other words, a list e_1, \ldots, e_m of vectors in *V* is orthonormal if

$$\langle e_j, e_k
angle = egin{cases} 1 & ext{if } j = k, \ 0 & ext{if } j
eq k. \end{cases}$$

Examples:

• The standard basis in **F**^{*n*} is an orthonormal list.

Definition: orthonormal

- A list of vectors in V is called *orthonormal* if each vector in the list has norm 1 and is orthogonal to all the other vectors in the list.
- In other words, a list e_1, \ldots, e_m of vectors in *V* is orthonormal if

$$\langle e_j, e_k \rangle = \begin{cases} 1 & \text{if } j = k, \\ 0 & \text{if } j \neq k. \end{cases}$$

Examples:

• The standard basis in **F**^{*n*} is an orthonormal list.

• $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right), \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$ is an orthonormal list in \mathbf{F}^3 .

Definition: orthonormal

- A list of vectors in V is called *orthonormal* if each vector in the list has norm 1 and is orthogonal to all the other vectors in the list.
- In other words, a list e_1, \ldots, e_m of vectors in *V* is orthonormal if

$$\langle e_j, e_k \rangle = \begin{cases} 1 & \text{if } j = k, \\ 0 & \text{if } j \neq k. \end{cases}$$

Examples:

- The standard basis in **F**^{*n*} is an orthonormal list.
- $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right), \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$ is an orthonormal list in \mathbf{F}^3 .
- $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right), \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right), \left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}\right)$ is an orthonormal list in \mathbf{F}^3 .

The norm of an orthonormal linear combination

If e_1, \ldots, e_m is an orthonormal list of vectors in *V*, then

$$||a_1e_1 + \dots + a_me_m||^2 = |a_1|^2 + \dots + |a_m|^2$$

for all $a_1, \ldots, a_m \in \mathbf{F}$.

The norm of an orthonormal linear combination

If e_1, \ldots, e_m is an orthonormal list of vectors in *V*, then

$$||a_1e_1 + \dots + a_me_m||^2 = |a_1|^2 + \dots + |a_m|^2$$

for all $a_1, \ldots, a_m \in \mathbf{F}$.

Proof Pythagorean Theorem

The norm of an orthonormal linear combination

If e_1, \ldots, e_m is an orthonormal list of vectors in *V*, then

$$||a_1e_1 + \dots + a_me_m||^2 = |a_1|^2 + \dots + |a_m|^2$$

for all $a_1, \ldots, a_m \in \mathbf{F}$.

Orthonormal list is linearly independent

Every orthonormal list of vectors is linearly independent.

Proof Pythagorean Theorem

The norm of an orthonormal linear combination

If e_1, \ldots, e_m is an orthonormal list of vectors in *V*, then

$$||a_1e_1 + \dots + a_me_m||^2 = |a_1|^2 + \dots + |a_m|^2$$

for all $a_1, \ldots, a_m \in \mathbf{F}$.

Proof Pythagorean Theorem

Orthonormal list is linearly independent

Every orthonormal list of vectors is linearly independent.

Proof Suppose e_1, \ldots, e_m is an orthonormal list of vectors in *V* and $a_1, \ldots, a_m \in \mathbf{F}$ are such that

 $a_1e_1+\cdots+a_me_m=0.$

Then $|a_1|^2 + \cdots + |a_m|^2 = 0$, which means that all the a_j 's are 0. Thus e_1, \ldots, e_m is linearly independent.

Definition: orthonormal basis

An orthonormal basis of V is an orthonormal list of vectors in V that is also a basis of V.

Definition: orthonormal basis

An orthonormal basis of V is an orthonormal list of vectors in V that is also a basis of V.

An orthonormal list of the right length is an orthonormal basis

Every orthonormal list of vectors in V with length dim V is an orthonormal basis of V.

Example:

Definition: orthonormal basis

An orthonormal basis of V is an orthonormal list of vectors in V that is also a basis of V.

$\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right), \left(\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}\right), \left(\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}\right), \left(-\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, \frac{1}{2}\right)$

is an orthonormal basis of \mathbf{F}^4 .

An orthonormal list of the right length is an orthonormal basis

Every orthonormal list of vectors in V with length dim V is an orthonormal basis of V.

Definition: orthonormal basis

An *orthonormal basis* of V is an orthonormal list of vectors in V that is also a basis of V.

An orthonormal list of the right length is an orthonormal basis

Every orthonormal list of vectors in V with length dim V is an orthonormal basis of V.

Example:

 $\left(\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right), \left(\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right), \left(\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right), \left(-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right)$

is an orthonormal basis of \mathbf{F}^4 .

Writing a vector as linear combination of orthonormal basis

Suppose e_1, \ldots, e_n is an orthonormal basis of V and $v \in V$. Then

$$v = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_n \rangle e_n$$

and

$$\|v\|^2 = |\langle v, e_1 \rangle|^2 + \cdots + |\langle v, e_n \rangle|^2.$$

Definition: orthonormal basis

An *orthonormal basis* of V is an orthonormal list of vectors in V that is also a basis of V.

An orthonormal list of the right length is an orthonormal basis

Every orthonormal list of vectors in V with length dim V is an orthonormal basis of V.

Example:

 $\big(\tfrac{1}{2}, \tfrac{1}{2}, \tfrac{1}{2}, \tfrac{1}{2} \big), \big(\tfrac{1}{2}, \tfrac{1}{2}, -\tfrac{1}{2}, -\tfrac{1}{2} \big), \big(\tfrac{1}{2}, -\tfrac{1}{2}, -\tfrac{1}{2}, \tfrac{1}{2} \big), \big(-\tfrac{1}{2}, \tfrac{1}{2}, -\tfrac{1}{2}, \tfrac{1}{2} \big)$

is an orthonormal basis of \mathbf{F}^4 .

Writing a vector as linear combination of orthonormal basis

Suppose e_1, \ldots, e_n is an orthonormal basis of V and $v \in V$. Then

$$v = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_n \rangle e_n$$

and

$$|v||^2 = |\langle v, e_1 \rangle|^2 + \cdots + |\langle v, e_n \rangle|^2.$$

Proof There exist scalars a_1, \ldots, a_n such that $v = a_1e_1 + \cdots + a_ne_n$. Take inner product with e_j .

Gram–Schmidt Procedure

Suppose v_1, \ldots, v_m is a linearly independent list of vectors in *V*. Let $e_1 = v_1/||v_1||$. For $j = 2, \ldots, m$, define e_j inductively by $e_j = \frac{v_j - \langle v_j, e_1 \rangle e_1 - \cdots - \langle v_j, e_{j-1} \rangle e_{j-1}}{||v_j - \langle v_j, e_1 \rangle e_1 - \cdots - \langle v_j, e_{j-1} \rangle e_{j-1}||}$. Then e_1, \ldots, e_m is an orthonormal list of vectors

in V such that

$$\operatorname{span}(v_1,\ldots,v_j) = \operatorname{span}(e_1,\ldots,e_j)$$

for $j = 1,\ldots,m$.

Gram–Schmidt Procedure

Gram–Schmidt Procedure

Suppose v_1, \ldots, v_m is a linearly independent list of vectors in *V*. Let $e_1 = v_1/||v_1||$. For $j = 2, \ldots, m$, define e_j inductively by $e_j = \frac{v_j - \langle v_j, e_1 \rangle e_1 - \cdots - \langle v_j, e_{j-1} \rangle e_{j-1}}{||v_j - \langle v_j, e_1 \rangle e_1 - \cdots - \langle v_j, e_{j-1} \rangle e_{j-1}||}.$

Then e_1, \ldots, e_m is an orthonormal list of vectors in *V* such that

$$\operatorname{span}(v_1,\ldots,v_j) = \operatorname{span}(e_1,\ldots,e_j)$$

for $j = 1,\ldots,m$.

Example:

Suppose $V = \mathcal{P}_2(\mathbf{R})$, where the inner product is given by

$$\langle p,q\rangle = \int_{-1}^{1} p(x)q(x) \, dx.$$

Applying the Gram–Schmidt Procedure to the basis $1, x, x^2$ produces the orthonormal basis

$$\sqrt{\frac{1}{2}}, \sqrt{\frac{3}{2}}x, \sqrt{\frac{45}{8}}(x^2 - \frac{1}{3}).$$

Existence of orthonormal basis

Every finite-dimensional inner product space has an orthonormal basis.

Existence of orthonormal basis

Every finite-dimensional inner product space has an orthonormal basis.

Proof Suppose *V* is finite-dimensional. Choose a basis of *V*. Apply the Gram–Schmidt Procedure to it, producing an orthonormal list with length dim *V*. This orthonormal list is an orthonormal basis of *V*.

Existence of orthonormal basis

Every finite-dimensional inner product space has an orthonormal basis.

Proof Suppose *V* is finite-dimensional. Choose a basis of *V*. Apply the Gram–Schmidt Procedure to it, producing an orthonormal list with length dim *V*. This orthonormal list is an orthonormal basis of *V*.

Orthonormal list extends to orthonormal basis

Suppose V is finite-dimensional. Then every orthonormal list of vectors in Vcan be extended to an orthonormal basis of V.

Suppose *V* is a finite-dimensional complex vector space and $T \in \mathcal{L}(V)$. Then *T* has an upper-triangular matrix with respect to some orthonormal basis of *V*.

Suppose *V* is a finite-dimensional complex vector space and $T \in \mathcal{L}(V)$. Then *T* has an upper-triangular matrix with respect to some orthonormal basis of *V*.

Proof *T* has an upper-triangular matrix with respect to some basis v_1, \ldots, v_n of *V*:

$$\mathcal{M}(T) = \begin{pmatrix} * & * \\ & \ddots & \\ 0 & * \end{pmatrix}.$$

Suppose *V* is a finite-dimensional complex vector space and $T \in \mathcal{L}(V)$. Then *T* has an upper-triangular matrix with respect to some orthonormal basis of *V*.

Proof *T* has an upper-triangular matrix with respect to some basis v_1, \ldots, v_n of *V*:

$$\mathcal{M}(T) = \left(egin{array}{ccc} * & * \ & \ddots & \ 0 & * \end{array}
ight).$$

Thus $\operatorname{span}(v_1, \ldots, v_j)$ is invariant under *T* for each $j = 1, \ldots, n$.

Suppose *V* is a finite-dimensional complex vector space and $T \in \mathcal{L}(V)$. Then *T* has an upper-triangular matrix with respect to some orthonormal basis of *V*.

Proof *T* has an upper-triangular matrix with respect to some basis v_1, \ldots, v_n of *V*:

$$\mathcal{M}(T) = \left(egin{array}{ccc} * & * \ & \ddots & \ 0 & * \end{array}
ight).$$

Thus $span(v_1, \ldots, v_j)$ is invariant under *T* for each $j = 1, \ldots, n$.

Apply the Gram–Schmidt Procedure to v_1, \ldots, v_n , producing an orthonormal basis e_1, \ldots, e_n of *V*.

Suppose *V* is a finite-dimensional complex vector space and $T \in \mathcal{L}(V)$. Then *T* has an upper-triangular matrix with respect to some orthonormal basis of *V*.

Proof *T* has an upper-triangular matrix with respect to some basis v_1, \ldots, v_n of *V*:

$$\mathcal{M}(T) = \left(egin{array}{ccc} * & * \ & \ddots & \ 0 & * \end{array}
ight).$$

Thus $\operatorname{span}(v_1, \ldots, v_j)$ is invariant under *T* for each $j = 1, \ldots, n$.

Apply the Gram–Schmidt Procedure to v_1, \ldots, v_n , producing an orthonormal basis e_1, \ldots, e_n of *V*. Because

 $\operatorname{span}(e_1,\ldots,e_j) = \operatorname{span}(v_1,\ldots,v_j)$ for each *j*, we conclude that $\operatorname{span}(e_1,\ldots,e_j)$ is invariant under *T* for each $j = 1,\ldots,n$. Thus *T* has an upper-triangular matrix with respect to the orthonormal basis e_1,\ldots,e_n .

Definition: linear functional

A *linear functional* on *V* is a linear map from *V* to **F**. In other words, a linear functional is an element of $\mathcal{L}(V, \mathbf{F})$.

Definition: linear functional

A *linear functional* on *V* is a linear map from *V* to **F**. In other words, a linear functional is an element of $\mathcal{L}(V, \mathbf{F})$.

Example: Suppose $u \in V$. Define $\varphi: V \to \mathbf{F}$ by $\varphi(w) = \langle w, u \rangle$.

Then φ is a linear functional on *V*.

Definition: linear functional

A *linear functional* on *V* is a linear map from *V* to **F**. In other words, a linear functional is an element of $\mathcal{L}(V, \mathbf{F})$.

Example: Suppose $u \in V$. Define $\varphi: V \to \mathbf{F}$ by $\varphi(w) = \langle w, u \rangle$.

Then φ is a linear functional on *V*.

Riesz Representation Theorem

Suppose *V* is finite-dimensional and φ is a linear functional on *V*. Then there is a unique vector $u \in V$ such that

$$\varphi(w) = \langle w, u \rangle$$

for every $w \in V$.

Definition: linear functional

A *linear functional* on *V* is a linear map from *V* to **F**. In other words, a linear functional is an element of $\mathcal{L}(V, \mathbf{F})$.

Example: Suppose $u \in V$. Define $\varphi \colon V \to \mathbf{F}$ by $\varphi(w) = \langle w, u \rangle$.

Then φ is a linear functional on *V*.

Riesz Representation Theorem

Suppose *V* is finite-dimensional and φ is a linear functional on *V*. Then there is a unique vector $u \in V$ such that

$$\varphi(w) = \langle w, u \rangle$$

for every $w \in V$.

Proof Let e_1, \ldots, e_n be an orthonormal basis of *V*. Then

$$u = \overline{\varphi(e_1)}e_1 + \cdots + \overline{\varphi(e_n)}e_n$$

Linear Algebra Done Right, by Sheldon Axler

