
Orthonormal Bases



Notation

F denotes either R or C.

V denotes an inner product space over F.



Orthonormal Lists

Definition: orthonormal

A list of vectors in V is called
orthonormal if each vector in
the list has norm 1 and is
orthogonal to all the other
vectors in the list.
In other words, a list e1, . . . , em

of vectors in V is orthonormal if

〈ej, ek〉 =

{
1 if j = k,
0 if j 6= k.

Examples:

The standard basis in Fn is an
orthonormal list.( 1√
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)
is an orthonormal list in F3.
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Orthonormal Linear Combinations

The norm of an orthonormal linear
combination

If e1, . . . , em is an orthonormal list of vectors
in V, then

‖a1e1 + · · ·+ amem‖2 = |a1|2 + · · ·+ |am|2

for all a1, . . . , am ∈ F.

Proof Pythagorean Theorem

Orthonormal list is linearly
independent

Every orthonormal list of vectors
is linearly independent.

Proof Suppose e1, . . . , em is an or-
thonormal list of vectors in V and
a1, . . . , am ∈ F are such that

a1e1 + · · ·+ amem = 0.

Then |a1|2 + · · ·+ |am|2 = 0, which
means that all the aj’s are 0. Thus
e1, . . . , em is linearly independent.
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Orthonormal Bases

Definition: orthonormal basis

An orthonormal basis of V is an
orthonormal list of vectors in V
that is also a basis of V.

An orthonormal list of the
right length is an orthonor-
mal basis

Every orthonormal list of vectors
in V with length dim V is an or-
thonormal basis of V.

Example:(1
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)
is an orthonormal basis of F4.

Writing a vector as linear combination of
orthonormal basis

Suppose e1, . . . , en is an orthonormal basis of V
and v ∈ V. Then

v = 〈v, e1〉e1 + · · ·+ 〈v, en〉en

and
‖v‖2 = |〈v, e1〉|2 + · · ·+ |〈v, en〉|2.

Proof There exist scalars a1, . . . , an such that
v = a1e1 + · · ·+ anen. Take inner product with ej.
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Gram–Schmidt Procedure

Gram–Schmidt Procedure

Suppose v1, . . . , vm is a linearly independent
list of vectors in V. Let e1 = v1/‖v1‖. For
j = 2, . . . ,m, define ej inductively by

ej =
vj − 〈vj, e1〉e1 − · · · − 〈vj, ej−1〉ej−1

‖vj − 〈vj, e1〉e1 − · · · − 〈vj, ej−1〉ej−1‖
.

Then e1, . . . , em is an orthonormal list of vectors
in V such that

span(v1, . . . , vj) = span(e1, . . . , ej)

for j = 1, . . . ,m.

Example:
Suppose V = P2(R), where the
inner product is given by

〈p, q〉 =

∫ 1

−1
p(x)q(x) dx.

Applying the Gram–Schmidt
Procedure to the basis 1, x, x2

produces the orthonormal basis√
1
2 ,
√

3
2 x,
√

45
8

(
x2 − 1

3

)
.
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Orthonormal Bases

Existence of orthonormal basis

Every finite-dimensional inner product
space has an orthonormal basis.

Proof Suppose V is finite-dimensional.
Choose a basis of V. Apply the Gram–
Schmidt Procedure to it, producing an
orthonormal list with length dim V. This
orthonormal list is an orthonormal basis
of V.

Orthonormal list extends to
orthonormal basis

Suppose V is finite-dimensional. Then
every orthonormal list of vectors in V
can be extended to an orthonormal
basis of V.
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Upper-Triangular Matrices

Schur’s Theorem

Suppose V is a finite-dimensional com-
plex vector space and T ∈ L(V). Then
T has an upper-triangular matrix with
respect to some orthonormal basis of V.

Proof T has an upper-triangular matrix
with respect to some basis v1, . . . , vn of V:

M(T) =

 ∗ ∗
. . .

0 ∗

 .

Thus span(v1, . . . , vj) is invariant under T
for each j = 1, . . . , n.

Apply the Gram–Schmidt Procedure to
v1, . . . , vn, producing an orthonormal ba-
sis e1, . . . , en of V.
Because

span(e1, . . . , ej) = span(v1, . . . , vj)

for each j, we conclude that
span(e1, . . . , ej) is invariant under T
for each j = 1, . . . , n. Thus T has an
upper-triangular matrix with respect to
the orthonormal basis e1, . . . , en.
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Linear Functionals

Definition: linear functional

A linear functional on V is a linear map
from V to F. In other words, a linear
functional is an element of L(V,F).

Example: Suppose u ∈ V. Define
ϕ : V → F by

ϕ(w) = 〈w, u〉.

Then ϕ is a linear functional on V.

Riesz Representation Theorem

Suppose V is finite-dimensional and ϕ
is a linear functional on V. Then there
is a unique vector u ∈ V such that

ϕ(w) = 〈w, u〉
for every w ∈ V.

Proof Let e1, . . . , en be an
orthonormal basis of V. Then

u = ϕ(e1)e1 + · · ·+ ϕ(en)en.
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