Matrices, part 1: The Matrix of a Linear Map
Notation

\(\mathbb{F} \) denotes either \(\mathbb{R} \) or \(\mathbb{C} \).

\(V \) and \(W \) denote vector spaces over \(\mathbb{F} \).
Definition: matrix, \(A_{j,k} \)

Let \(m \) and \(n \) denote positive integers. An \(m \)-by-\(n \) matrix \(A \) is a rectangular array of elements of \(F \) with \(m \) rows and \(n \) columns:

\[
A = \begin{pmatrix}
A_{1,1} & \ldots & A_{1,n} \\
\vdots & \ddots & \vdots \\
A_{m,1} & \ldots & A_{m,n}
\end{pmatrix}.
\]

The notation \(A_{j,k} \) denotes the entry in row \(j \), column \(k \) of \(A \).
Definition: *matrix, $A_{j,k}$*

Let m and n denote positive integers. An m-by-n *matrix* A is a rectangular array of elements of F with m rows and n columns:

$$
A = \begin{pmatrix}
A_{1,1} & \cdots & A_{1,n} \\
\vdots & & \vdots \\
A_{m,1} & \cdots & A_{m,n}
\end{pmatrix}.
$$

The notation $A_{j,k}$ denotes the entry in row j, column k of A.

The first index refers to the row number and the second index refers to the column number.
Definition: **matrix, \(A_{j,k} \)**

Let \(m \) and \(n \) denote positive integers. An \(m \)-by-\(n \) matrix \(A \) is a rectangular array of elements of \(F \) with \(m \) rows and \(n \) columns:

\[
A = \begin{pmatrix}
A_{1,1} & \cdots & A_{1,n} \\
\vdots & & \vdots \\
A_{m,1} & \cdots & A_{m,n}
\end{pmatrix}
\]

The notation \(A_{j,k} \) denotes the entry in row \(j \), column \(k \) of \(A \).

The first index refers to the row number and the second index refers to the column number.

Thus \(A_{2,3} \) refers to the entry in the second row, third column of \(A \).
Definition: **matrix, \(A_{j,k}\)**

Let \(m\) and \(n\) denote positive integers. An \(m\)-by-\(n\) matrix \(A\) is a rectangular array of elements of \(F\) with \(m\) rows and \(n\) columns:

\[
A = \begin{pmatrix}
A_{1,1} & \cdots & A_{1,n} \\
\vdots & & \vdots \\
A_{m,1} & \cdots & A_{m,n}
\end{pmatrix}.
\]

The notation \(A_{j,k}\) denotes the entry in row \(j\), column \(k\) of \(A\).

The first index refers to the row number and the second index refers to the column number.

Thus \(A_{2,3}\) refers to the entry in the second row, third column of \(A\).

Example: Suppose \(A = \begin{pmatrix} 8 & 4 & 5 \\ 1 & 9 & 7 \end{pmatrix}\). Then \(A_{2,3} = 7\).
Definition: matrix of a linear map, \(\mathcal{M}(T) \)

Suppose \(T \in \mathcal{L}(V, W) \) and \(v_1, \ldots, v_n \) is a basis of \(V \) and \(w_1, \ldots, w_m \) is a basis of \(W \). The *matrix of \(T \) with respect to these bases* is the \(m \)-by-\(n \) matrix \(\mathcal{M}(T) \) whose entries \(A_{j,k} \) are defined by

\[
Tv_k = A_{1,k}w_1 + \cdots + A_{m,k}w_m.
\]

If the bases are not clear from the context, then the notation \(\mathcal{M}(T, (v_1, \ldots, v_n), (w_1, \ldots, w_m)) \) is used.
Understanding the Matrix of a Linear Map

\[\mathcal{M}(T) = \begin{pmatrix} w_1 & \vdots & A_{1,k} & \vdots & \cdots & \cdots & \cdots & A_{m,k} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ w_m & \vdots & A_{m,k} \end{pmatrix} \]

The \(k \)th column of \(\mathcal{M}(T) \) consists of the scalars needed to write \(Tv_k \) as a linear combination of \(w_1, \ldots, w_m \):

\[Tv_k = \sum_{j=1}^{m} A_{j,k} w_j. \]

The picture above should remind you that \(Tv_k \) can be computed from \(\mathcal{M}(T) \) by multiplying each entry in the \(k \)th column by the corresponding \(w_j \) from the left column, and then adding up the resulting vectors.
Understanding the Matrix of a Linear Map

\[M(T) = \begin{pmatrix}
 v_1 & \ldots & v_k & \ldots & v_n \\
 w_1 & \vdots & A_{1,k} & \vdots & \vdots \\
 w_m & \vdots & A_{m,k} & \vdots & \vdots
\end{pmatrix}. \]

The \(k \)th column of \(M(T) \) consists of the scalars needed to write \(Tv_k \) as a linear combination of \(w_1, \ldots, w_m \):

\[Tv_k = \sum_{j=1}^{m} A_{j,k}w_j. \]
The k^{th} column of $\mathcal{M}(T)$ consists of the scalars needed to write Tv_k as a linear combination of w_1, \ldots, w_m:

$$Tv_k = \sum_{j=1}^{m} A_{j,k}w_j.$$
Example: Suppose $T \in \mathcal{L}(\mathbb{F}^2, \mathbb{F}^3)$ is defined by

$$T(x, y) = (x + 3y, 2x + 5y, 7x + 9y).$$

Because $T(1, 0) = (1, 2, 7)$ and $T(0, 1) = (3, 5, 9)$, the matrix of T with respect to the standard bases is the 3-by-2 matrix

$$\mathcal{M}(T) = \begin{pmatrix} 1 & 3 \\ 2 & 5 \\ 7 & 9 \end{pmatrix}.$$
Example: Suppose $T \in \mathcal{L}(\mathbb{F}^2, \mathbb{F}^3)$ is defined by

$$T(x, y) = (x + 3y, 2x + 5y, 7x + 9y).$$

Because $T(1, 0) = (1, 2, 7)$ and $T(0, 1) = (3, 5, 9)$, the matrix of T with respect to the standard bases is the 3-by-2 matrix

$$M(T) = \begin{pmatrix} 1 & 3 \\ 2 & 5 \\ 7 & 9 \end{pmatrix}.$$

Example: Suppose $D \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{P}_2(\mathbb{R}))$ is the differentiation map defined by $Dp = p'$. Because $(x^n)' = nx^{n-1}$, the matrix of D with respect to the standard bases of $\mathcal{P}_3(\mathbb{R})$ and $\mathcal{P}_2(\mathbb{R})$ is the 3-by-4 matrix

$$M(D) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}.$$
Addition of Matrices

Definition: matrix addition

The *sum of two matrices of the same size* is the matrix obtained by adding corresponding entries in the matrices:

\[
\begin{pmatrix}
A_{1,1} & \ldots & A_{1,n} \\
\vdots & \ddots & \vdots \\
A_{m,1} & \ldots & A_{m,n}
\end{pmatrix}
+
\begin{pmatrix}
C_{1,1} & \ldots & C_{1,n} \\
\vdots & \ddots & \vdots \\
C_{m,1} & \ldots & C_{m,n}
\end{pmatrix}
=
\begin{pmatrix}
A_{1,1} + C_{1,1} & \ldots & A_{1,n} + C_{1,n} \\
\vdots & \ddots & \vdots \\
A_{m,1} + C_{m,1} & \ldots & A_{m,n} + C_{m,n}
\end{pmatrix}.
\]

In other words, \((A + C)_{j,k} = A_{j,k} + C_{j,k}\).
Addition of Matrices

Definition: matrix addition

The *sum of two matrices of the same size* is the matrix obtained by adding corresponding entries in the matrices:

\[
\begin{pmatrix}
A_{1,1} & \ldots & A_{1,n} \\
\vdots & & \vdots \\
A_{m,1} & \ldots & A_{m,n}
\end{pmatrix}
+
\begin{pmatrix}
C_{1,1} & \ldots & C_{1,n} \\
\vdots & & \vdots \\
C_{m,1} & \ldots & C_{m,n}
\end{pmatrix}
=
\begin{pmatrix}
A_{1,1} + C_{1,1} & \ldots & A_{1,n} + C_{1,n} \\
\vdots & & \vdots \\
A_{m,1} + C_{m,1} & \ldots & A_{m,n} + C_{m,n}
\end{pmatrix}.
\]

In other words, \((A + C)_{j,k} = A_{j,k} + C_{j,k}\).

In the following result, the assumption is that the same bases are used for \(\mathcal{M}(S + T)\), \(\mathcal{M}(S)\), and \(\mathcal{M}(T)\).
Addition of Matrices

Definition: *matrix addition*

The *sum of two matrices of the same size* is the matrix obtained by adding corresponding entries in the matrices:

\[
\begin{pmatrix}
A_{1,1} & \ldots & A_{1,n} \\
\vdots & \ddots & \vdots \\
A_{m,1} & \ldots & A_{m,n}
\end{pmatrix} +
\begin{pmatrix}
C_{1,1} & \ldots & C_{1,n} \\
\vdots & \ddots & \vdots \\
C_{m,1} & \ldots & C_{m,n}
\end{pmatrix} =
\begin{pmatrix}
A_{1,1} + C_{1,1} & \ldots & A_{1,n} + C_{1,n} \\
\vdots & \ddots & \vdots \\
A_{m,1} + C_{m,1} & \ldots & A_{m,n} + C_{m,n}
\end{pmatrix}.
\]

In other words, \((A + C)_{j,k} = A_{j,k} + C_{j,k}\).

In the following result, the assumption is that the same bases are used for \(\mathcal{M}(S + T)\), \(\mathcal{M}(S)\), and \(\mathcal{M}(T)\).

The matrix of the sum of linear maps

Suppose \(S, T \in \mathcal{L}(V, W)\). Then \(\mathcal{M}(S + T) = \mathcal{M}(S) + \mathcal{M}(T)\).
Definition: *scalar multiplication of a matrix*

The product of a scalar and a matrix is the matrix obtained by multiplying each entry in the matrix by the scalar:

\[
\lambda \left(\begin{array}{ccc}
A_{1,1} & \cdots & A_{1,n} \\
\vdots & \ddots & \vdots \\
A_{m,1} & \cdots & A_{m,n}
\end{array} \right) = \left(\begin{array}{ccc}
\lambda A_{1,1} & \cdots & \lambda A_{1,n} \\
\vdots & \ddots & \vdots \\
\lambda A_{m,1} & \cdots & \lambda A_{m,n}
\end{array} \right).
\]

In other words, \((\lambda A)_{j,k} = \lambda A_{j,k}\).
**Definition: **scalar multiplication of a matrix

The product of a scalar and a matrix is the matrix obtained by multiplying each entry in the matrix by the scalar:

$$\lambda \begin{pmatrix} A_{1,1} & \ldots & A_{1,n} \\ \vdots & \ddots & \vdots \\ A_{m,1} & \ldots & A_{m,n} \end{pmatrix} = \begin{pmatrix} \lambda A_{1,1} & \ldots & \lambda A_{1,n} \\ \vdots & \ddots & \vdots \\ \lambda A_{m,1} & \ldots & \lambda A_{m,n} \end{pmatrix}.$$

In other words, $$(\lambda A)_{j,k} = \lambda A_{j,k}.$$

In the following result, the assumption is that the same bases are used for $\mathcal{M}(\lambda T)$ and $\mathcal{M}(T).$
Definition: **scalar multiplication of a matrix**

The product of a scalar and a matrix is the matrix obtained by multiplying each entry in the matrix by the scalar:

\[
\lambda \begin{pmatrix}
A_{1,1} & \ldots & A_{1,n} \\
\vdots & & \vdots \\
A_{m,1} & \ldots & A_{m,n}
\end{pmatrix} = \begin{pmatrix}
\lambda A_{1,1} & \ldots & \lambda A_{1,n} \\
\vdots & & \vdots \\
\lambda A_{m,1} & \ldots & \lambda A_{m,n}
\end{pmatrix}.
\]

In other words, \((\lambda A)_{j,k} = \lambda A_{j,k}\).

In the following result, the assumption is that the same bases are used for \(\mathcal{M}(\lambda T)\) and \(\mathcal{M}(T)\).

The matrix of a scalar times a linear map

Suppose \(\lambda \in \mathbb{F}\) and \(T \in \mathcal{L}(V, W)\). Then \(\mathcal{M}(\lambda T) = \lambda \mathcal{M}(T)\).
The Vector Space of Matrices

Notation: $\mathbb{F}^{m,n}$

For m and n positive integers, the set of all m-by-n matrices with entries in \mathbb{F} is denoted by $\mathbb{F}^{m,n}$.

$\dim \mathbb{F}^{m,n} = mn$
Notation: $F^{m,n}$

For m and n positive integers, the set of all m-by-n matrices with entries in F is denoted by $F^{m,n}$.

\[
\dim F^{m,n} = mn
\]

Suppose m and n are positive integers. With addition and scalar multiplication defined as above, $F^{m,n}$ is a vector space with dimension mn.