Notation - F denotes either R or C. - *V* denotes an inner product space over **F**. Definition: orthogonal complement, U^{\perp} If U is a subset of V, then the *orthogonal* complement of U, denoted U^{\perp} , is the set of all vectors in V that are orthogonal to every vector in U: $$U^{\perp} = \{ v \in V : \langle v, u \rangle = 0 \text{ for every } u \in U \}.$$ Definition: orthogonal complement, U^{\perp} If U is a subset of V, then the *orthogonal* complement of U, denoted U^{\perp} , is the set of all vectors in V that are orthogonal to every vector in U: $$U^{\perp} = \{ v \in V : \langle v, u \rangle = 0 \text{ for every } u \in U \}.$$ If *U* is a line in R³ containing the origin, then U[⊥] is the plane containing the origin that is perpendicular to *U*. Definition: orthogonal complement, U^{\perp} If U is a subset of V, then the *orthogonal* complement of U, denoted U^{\perp} , is the set of all vectors in V that are orthogonal to every vector in U: $$U^{\perp} = \{ v \in V : \langle v, u \rangle = 0 \text{ for every } u \in U \}.$$ - If *U* is a line in R³ containing the origin, then *U*[⊥] is the plane containing the origin that is perpendicular to *U*. - If U is a plane in \mathbb{R}^3 containing the origin, then U^{\perp} is the line containing the origin that is perpendicular to U. Definition: orthogonal complement, U^{\perp} If U is a subset of V, then the *orthogonal* complement of U, denoted U^{\perp} , is the set of all vectors in V that are orthogonal to every vector in U: $$U^{\perp} = \{ v \in V : \langle v, u \rangle = 0 \text{ for every } u \in U \}.$$ - If *U* is a line in R³ containing the origin, then *U*[⊥] is the plane containing the origin that is perpendicular to *U*. - If *U* is a plane in R³ containing the origin, then *U*[⊥] is the line containing the origin that is perpendicular to *U*. #### Definition: orthogonal complement, U^{\perp} If U is a subset of V, then the *orthogonal* complement of U, denoted U^{\perp} , is the set of all vectors in V that are orthogonal to every vector in U: $$U^{\perp} = \{ v \in V : \langle v, u \rangle = 0 \text{ for every } u \in U \}.$$ - If *U* is a line in R³ containing the origin, then *U*[⊥] is the plane containing the origin that is perpendicular to *U*. - If *U* is a plane in R³ containing the origin, then *U*[⊥] is the line containing the origin that is perpendicular to *U*. ## Basic properties of orthogonal complement • If U is a subset of V, then U^{\perp} is a subspace of V. ### Definition: orthogonal complement, U^{\perp} If U is a subset of V, then the *orthogonal* complement of U, denoted U^{\perp} , is the set of all vectors in V that are orthogonal to every vector in U: $$U^{\perp} = \{ v \in V : \langle v, u \rangle = 0 \text{ for every } u \in U \}.$$ - If *U* is a line in R³ containing the origin, then *U*[⊥] is the plane containing the origin that is perpendicular to *U*. - If *U* is a plane in R³ containing the origin, then *U*[⊥] is the line containing the origin that is perpendicular to *U*. - If U is a subset of V, then U^{\perp} is a subspace of V. - $\{0\}^{\perp} = V$. ### Definition: orthogonal complement, U^{\perp} If U is a subset of V, then the *orthogonal* complement of U, denoted U^{\perp} , is the set of all vectors in V that are orthogonal to every vector in U: $$U^{\perp} = \{ v \in V : \langle v, u \rangle = 0 \text{ for every } u \in U \}.$$ - If *U* is a line in R³ containing the origin, then *U*[⊥] is the plane containing the origin that is perpendicular to *U*. - If *U* is a plane in R³ containing the origin, then *U*[⊥] is the line containing the origin that is perpendicular to *U*. - If U is a subset of V, then U^{\perp} is a subspace of V. - $\{0\}^{\perp} = V$. - $V^{\perp} = \{0\}.$ ### Definition: orthogonal complement, U^{\perp} If U is a subset of V, then the *orthogonal* complement of U, denoted U^{\perp} , is the set of all vectors in V that are orthogonal to every vector in U: $$U^{\perp} = \{ v \in V : \langle v, u \rangle = 0 \text{ for every } u \in U \}.$$ - If *U* is a line in R³ containing the origin, then U[⊥] is the plane containing the origin that is perpendicular to *U*. - If *U* is a plane in R³ containing the origin, then *U*[⊥] is the line containing the origin that is perpendicular to *U*. - If U is a subset of V, then U^{\perp} is a subspace of V. - $\{0\}^{\perp} = V$. - $V^{\perp} = \{0\}.$ - If U is a subset of V, then $U \cap U^{\perp} \subset \{0\}$. ### Definition: orthogonal complement, U^{\perp} If U is a subset of V, then the *orthogonal* complement of U, denoted U^{\perp} , is the set of all vectors in V that are orthogonal to every vector in U: $$U^{\perp} = \{ v \in V : \langle v, u \rangle = 0 \text{ for every } u \in U \}.$$ - If *U* is a line in R³ containing the origin, then *U*[⊥] is the plane containing the origin that is perpendicular to *U*. - If *U* is a plane in R³ containing the origin, then *U*[⊥] is the line containing the origin that is perpendicular to *U*. - If U is a subset of V, then U^{\perp} is a subspace of V. - $\{0\}^{\perp} = V$. - $V^{\perp} = \{0\}.$ - If U is a subset of V, then $U \cap U^{\perp} \subset \{0\}$. - If U and W are subsets of V and $U \subset W$, then $W^{\perp} \subset U^{\perp}$. ### Direct sum of a subspace and its orthogonal complement $$V = U \oplus U^{\perp}$$. ### Direct sum of a subspace and its orthogonal complement Suppose U is a finite-dimensional subspace of V. Then $$V = U \oplus U^{\perp}$$. Proof Suppose $v \in V$. Let e_1, \ldots, e_m be an orthonormal basis of U. Let $$u = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_m \rangle e_m.$$ ### Direct sum of a subspace and its orthogonal complement Suppose U is a finite-dimensional subspace of V. Then $$V=U\oplus U^{\perp}.$$ Proof Suppose $v \in V$. Let e_1, \ldots, e_m be an orthonormal basis of U. Let $$u = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_m \rangle e_m.$$ Then $$\langle v - u, e_j \rangle = \langle v, e_j \rangle - \langle u, e_j \rangle = 0$$ for $j = 1, \dots, m$. ### Direct sum of a subspace and its orthogonal complement Suppose U is a finite-dimensional subspace of V. Then $$V = U \oplus U^{\perp}$$. Proof Suppose $v \in V$. Let e_1, \ldots, e_m be an orthonormal basis of U. Let $$u = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_m \rangle e_m.$$ Then $\langle v - u, e_j \rangle = \langle v, e_j \rangle - \langle u, e_j \rangle = 0$ for $j = 1, \dots, m$. Thus $v - u \in U^{\perp}$. ### Direct sum of a subspace and its orthogonal complement Suppose U is a finite-dimensional subspace of V. Then $$V = U \oplus U^{\perp}$$. Proof Suppose $v \in V$. Let e_1, \ldots, e_m be an orthonormal basis of U. Let $$u = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_m \rangle e_m.$$ Then $\langle v-u,e_j\rangle=\langle v,e_j\rangle-\langle u,e_j\rangle=0$ for $j=1,\ldots,m$. Thus $v-u\in U^\perp$. Now $$v = u + (v - u),$$ showing that $v \in U + U^{\perp}$. Thus $V = U + U^{\perp}$. ### Direct sum of a subspace and its orthogonal complement Suppose U is a finite-dimensional subspace of V. Then $$V = U \oplus U^{\perp}$$. Proof Suppose $v \in V$. Let e_1, \ldots, e_m be an orthonormal basis of U. Let $$u = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_m \rangle e_m.$$ Then $\langle v - u, e_j \rangle = \langle v, e_j \rangle - \langle u, e_j \rangle = 0$ for $j = 1, \dots, m$. Thus $v - u \in U^{\perp}$. Now $$v = u + (v - u),$$ showing that $v \in U+U^{\perp}$. Thus $V=U+U^{\perp}$. ## Dimension of the orthogonal complement Suppose V is finite-dimensional and U is a subspace of V. Then $$\dim U^{\perp} = \dim V - \dim U.$$ ### Direct sum of a subspace and its orthogonal complement Suppose U is a finite-dimensional subspace of V. Then $$V = U \oplus U^{\perp}$$. Proof Suppose $v \in V$. Let e_1, \ldots, e_m be an orthonormal basis of U. Let $$u = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_m \rangle e_m.$$ Then $\langle v - u, e_j \rangle = \langle v, e_j \rangle - \langle u, e_j \rangle = 0$ for $j = 1, \dots, m$. Thus $v - u \in U^{\perp}$. Now $$v = u + (v - u),$$ showing that $v \in U + U^{\perp}$. Thus $V = U + U^{\perp}$. ### Dimension of the orthogonal complement Suppose V is finite-dimensional and U is a subspace of V. Then $$\dim U^{\perp} = \dim V - \dim U.$$ ## The orthogonal complement of the orthogonal complement $$U = (U^{\perp})^{\perp}$$. #### Definition: orthogonal projection, P_U Suppose U is a finite-dimensional subspace of V. The *orthogonal projection* of V onto U is the operator $P_U \in \mathcal{L}(V)$ defined as follows: For $v \in V$, write v = u + w, where $u \in U$ and $w \in U^{\perp}$. Then $P_U v = u$. ### Definition: orthogonal projection, P_U Suppose U is a finite-dimensional subspace of V. The *orthogonal projection* of V onto U is the operator $P_U \in \mathcal{L}(V)$ defined as follows: For $v \in V$, write v = u + w, where $u \in U$ and $w \in U^{\perp}$. Then $P_U v = u$. If e_1, \ldots, e_m is an orthonormal basis of U, then $$P_U v = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_m \rangle e_m.$$ #### Definition: orthogonal projection, P_U Suppose U is a finite-dimensional subspace of V. The *orthogonal projection* of V onto U is the operator $P_U \in \mathcal{L}(V)$ defined as follows: For $v \in V$, write v = u + w, where $u \in U$ and $w \in U^{\perp}$. Then $P_U v = u$. If e_1, \ldots, e_m is an orthonormal basis of U, then $$P_{U}v = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_m \rangle e_m.$$ # Properties of the orthogonal projection P_U $$ullet$$ $P_U \in \mathcal{L}(V)$; #### Definition: orthogonal projection, P_U Suppose U is a finite-dimensional subspace of V. The *orthogonal projection* of V onto U is the operator $P_U \in \mathcal{L}(V)$ defined as follows: For $v \in V$, write v = u + w, where $u \in U$ and $w \in U^{\perp}$. Then $P_U v = u$. If e_1, \ldots, e_m is an orthonormal basis of U, then $$P_{U}v = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_m \rangle e_m.$$ # Properties of the orthogonal projection P_U - ullet $P_U \in \mathcal{L}(V)$; - $P_U u = u$ for every $u \in U$; #### Definition: orthogonal projection, P_U Suppose U is a finite-dimensional subspace of V. The *orthogonal projection* of V onto U is the operator $P_U \in \mathcal{L}(V)$ defined as follows: For $v \in V$, write v = u + w, where $u \in U$ and $w \in U^{\perp}$. Then $P_U v = u$. If e_1, \ldots, e_m is an orthonormal basis of U, then $$P_{U}v = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_m \rangle e_m.$$ # Properties of the orthogonal projection P_U - ullet $P_U \in \mathcal{L}(V)$; - $P_U u = u$ for every $u \in U$; - $P_U w = 0$ for every $w \in U^{\perp}$; #### Definition: orthogonal projection, P_U Suppose U is a finite-dimensional subspace of V. The *orthogonal projection* of V onto U is the operator $P_U \in \mathcal{L}(V)$ defined as follows: For $v \in V$, write v = u + w, where $u \in U$ and $w \in U^{\perp}$. Then $P_U v = u$. If e_1, \ldots, e_m is an orthonormal basis of U, then $$P_{U}v = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_m \rangle e_m.$$ ## Properties of the orthogonal projection P_U - ullet $P_U \in \mathcal{L}(V)$; - $P_U u = u$ for every $u \in U$; - $P_U w = 0$ for every $w \in U^{\perp}$; - range $P_U = U$; #### Definition: orthogonal projection, P_U Suppose U is a finite-dimensional subspace of V. The *orthogonal projection* of V onto U is the operator $P_U \in \mathcal{L}(V)$ defined as follows: For $v \in V$, write v = u + w, where $u \in U$ and $w \in U^{\perp}$. Then $P_U v = u$. If e_1, \ldots, e_m is an orthonormal basis of U, then $$P_U v = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_m \rangle e_m.$$ ## Properties of the orthogonal projection P_U - ullet $P_U \in \mathcal{L}(V)$; - $P_U u = u$ for every $u \in U$; - $P_U w = 0$ for every $w \in U^{\perp}$; - range $P_U = U$; - $\operatorname{null} P_U = U^{\perp};$ #### Definition: orthogonal projection, P_U Suppose U is a finite-dimensional subspace of V. The *orthogonal projection* of V onto U is the operator $P_U \in \mathcal{L}(V)$ defined as follows: For $v \in V$, write v = u + w, where $u \in U$ and $w \in U^{\perp}$. Then $P_U v = u$. If e_1, \ldots, e_m is an orthonormal basis of U, then $$P_{UV} = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_m \rangle e_m.$$ ## Properties of the orthogonal projection P_U - ullet $P_U \in \mathcal{L}(V)$; - $P_U u = u$ for every $u \in U$; - $P_U w = 0$ for every $w \in U^{\perp}$; - range $P_U = U$; - $\operatorname{null} P_U = U^{\perp};$ - $v P_U v \in U^{\perp}$ for every $v \in V$; #### Definition: orthogonal projection, P_U Suppose U is a finite-dimensional subspace of V. The *orthogonal projection* of V onto U is the operator $P_U \in \mathcal{L}(V)$ defined as follows: For $v \in V$, write v = u + w, where $u \in U$ and $w \in U^{\perp}$. Then $P_U v = u$. If e_1, \ldots, e_m is an orthonormal basis of U, then $$P_{UV} = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_m \rangle e_m.$$ ## Properties of the orthogonal projection P_U - ullet $P_U \in \mathcal{L}(V)$; - $P_U u = u$ for every $u \in U$; - $P_U w = 0$ for every $w \in U^{\perp}$; - range $P_U = U$; - $\operatorname{null} P_U = U^{\perp};$ - $v P_U v \in U^{\perp}$ for every $v \in V$; - $P_U^2 = P_U$; #### Definition: orthogonal projection, P_U Suppose U is a finite-dimensional subspace of V. The *orthogonal projection* of V onto U is the operator $P_U \in \mathcal{L}(V)$ defined as follows: For $v \in V$, write v = u + w, where $u \in U$ and $w \in U^{\perp}$. Then $P_U v = u$. If e_1, \ldots, e_m is an orthonormal basis of U, then $$P_{UV} = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_m \rangle e_m.$$ ## Properties of the orthogonal projection P_U - ullet $P_U \in \mathcal{L}(V)$; - $P_U u = u$ for every $u \in U$; - $P_U w = 0$ for every $w \in U^{\perp}$; - range $P_U = U$; - $\operatorname{null} P_U = U^{\perp};$ - $v P_U v \in U^{\perp}$ for every $v \in V$; - $P_U^2 = P_U$; - $||P_Uv|| \le ||v||$ for every $v \in V$. ### Linear Algebra Done Right, by Sheldon Axler