

Notation

- F denotes either R or C.
- *V* denotes an inner product space over **F**.

Definition: orthogonal complement, U^{\perp}

If U is a subset of V, then the *orthogonal* complement of U, denoted U^{\perp} , is the set of all vectors in V that are orthogonal to every vector in U:

$$U^{\perp} = \{ v \in V : \langle v, u \rangle = 0 \text{ for every } u \in U \}.$$

Definition: orthogonal complement, U^{\perp}

If U is a subset of V, then the *orthogonal* complement of U, denoted U^{\perp} , is the set of all vectors in V that are orthogonal to every vector in U:

$$U^{\perp} = \{ v \in V : \langle v, u \rangle = 0 \text{ for every } u \in U \}.$$

 If *U* is a line in R³ containing the origin, then U[⊥] is the plane containing the origin that is perpendicular to *U*.

Definition: orthogonal complement, U^{\perp}

If U is a subset of V, then the *orthogonal* complement of U, denoted U^{\perp} , is the set of all vectors in V that are orthogonal to every vector in U:

$$U^{\perp} = \{ v \in V : \langle v, u \rangle = 0 \text{ for every } u \in U \}.$$

- If *U* is a line in R³ containing the origin, then *U*[⊥] is the plane containing the origin that is perpendicular to *U*.
- If U is a plane in \mathbb{R}^3 containing the origin, then U^{\perp} is the line containing the origin that is perpendicular to U.

Definition: orthogonal complement, U^{\perp}

If U is a subset of V, then the *orthogonal* complement of U, denoted U^{\perp} , is the set of all vectors in V that are orthogonal to every vector in U:

$$U^{\perp} = \{ v \in V : \langle v, u \rangle = 0 \text{ for every } u \in U \}.$$

- If *U* is a line in R³ containing the origin, then *U*[⊥] is the plane containing the origin that is perpendicular to *U*.
- If *U* is a plane in R³ containing the origin, then *U*[⊥] is the line containing the origin that is perpendicular to *U*.

Definition: orthogonal complement, U^{\perp}

If U is a subset of V, then the *orthogonal* complement of U, denoted U^{\perp} , is the set of all vectors in V that are orthogonal to every vector in U:

$$U^{\perp} = \{ v \in V : \langle v, u \rangle = 0 \text{ for every } u \in U \}.$$

- If *U* is a line in R³ containing the origin, then *U*[⊥] is the plane containing the origin that is perpendicular to *U*.
- If *U* is a plane in R³ containing the origin, then *U*[⊥] is the line containing the origin that is perpendicular to *U*.

Basic properties of orthogonal complement

• If U is a subset of V, then U^{\perp} is a subspace of V.

Definition: orthogonal complement, U^{\perp}

If U is a subset of V, then the *orthogonal* complement of U, denoted U^{\perp} , is the set of all vectors in V that are orthogonal to every vector in U:

$$U^{\perp} = \{ v \in V : \langle v, u \rangle = 0 \text{ for every } u \in U \}.$$

- If *U* is a line in R³ containing the origin, then *U*[⊥] is the plane containing the origin that is perpendicular to *U*.
- If *U* is a plane in R³ containing the origin, then *U*[⊥] is the line containing the origin that is perpendicular to *U*.

- If U is a subset of V, then U^{\perp} is a subspace of V.
- $\{0\}^{\perp} = V$.

Definition: orthogonal complement, U^{\perp}

If U is a subset of V, then the *orthogonal* complement of U, denoted U^{\perp} , is the set of all vectors in V that are orthogonal to every vector in U:

$$U^{\perp} = \{ v \in V : \langle v, u \rangle = 0 \text{ for every } u \in U \}.$$

- If *U* is a line in R³ containing the origin, then *U*[⊥] is the plane containing the origin that is perpendicular to *U*.
- If *U* is a plane in R³ containing the origin, then *U*[⊥] is the line containing the origin that is perpendicular to *U*.

- If U is a subset of V, then U^{\perp} is a subspace of V.
- $\{0\}^{\perp} = V$.
- $V^{\perp} = \{0\}.$

Definition: orthogonal complement, U^{\perp}

If U is a subset of V, then the *orthogonal* complement of U, denoted U^{\perp} , is the set of all vectors in V that are orthogonal to every vector in U:

$$U^{\perp} = \{ v \in V : \langle v, u \rangle = 0 \text{ for every } u \in U \}.$$

- If *U* is a line in R³ containing the origin, then U[⊥] is the plane containing the origin that is perpendicular to *U*.
- If *U* is a plane in R³ containing the origin, then *U*[⊥] is the line containing the origin that is perpendicular to *U*.

- If U is a subset of V, then U^{\perp} is a subspace of V.
- $\{0\}^{\perp} = V$.
- $V^{\perp} = \{0\}.$
- If U is a subset of V, then $U \cap U^{\perp} \subset \{0\}$.

Definition: orthogonal complement, U^{\perp}

If U is a subset of V, then the *orthogonal* complement of U, denoted U^{\perp} , is the set of all vectors in V that are orthogonal to every vector in U:

$$U^{\perp} = \{ v \in V : \langle v, u \rangle = 0 \text{ for every } u \in U \}.$$

- If *U* is a line in R³ containing the origin, then *U*[⊥] is the plane containing the origin that is perpendicular to *U*.
- If *U* is a plane in R³ containing the origin, then *U*[⊥] is the line containing the origin that is perpendicular to *U*.

- If U is a subset of V, then U^{\perp} is a subspace of V.
- $\{0\}^{\perp} = V$.
- $V^{\perp} = \{0\}.$
- If U is a subset of V, then $U \cap U^{\perp} \subset \{0\}$.
- If U and W are subsets of V and $U \subset W$, then $W^{\perp} \subset U^{\perp}$.

Direct sum of a subspace and its orthogonal complement

$$V = U \oplus U^{\perp}$$
.

Direct sum of a subspace and its orthogonal complement

Suppose U is a finite-dimensional subspace of V. Then

$$V = U \oplus U^{\perp}$$
.

Proof Suppose $v \in V$. Let e_1, \ldots, e_m be an orthonormal basis of U. Let

$$u = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_m \rangle e_m.$$

Direct sum of a subspace and its orthogonal complement

Suppose U is a finite-dimensional subspace of V. Then

$$V=U\oplus U^{\perp}.$$

Proof Suppose $v \in V$. Let e_1, \ldots, e_m be an orthonormal basis of U. Let

$$u = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_m \rangle e_m.$$

Then
$$\langle v - u, e_j \rangle = \langle v, e_j \rangle - \langle u, e_j \rangle = 0$$
 for $j = 1, \dots, m$.

Direct sum of a subspace and its orthogonal complement

Suppose U is a finite-dimensional subspace of V. Then

$$V = U \oplus U^{\perp}$$
.

Proof Suppose $v \in V$. Let e_1, \ldots, e_m be an orthonormal basis of U. Let

$$u = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_m \rangle e_m.$$

Then $\langle v - u, e_j \rangle = \langle v, e_j \rangle - \langle u, e_j \rangle = 0$ for $j = 1, \dots, m$. Thus $v - u \in U^{\perp}$.

Direct sum of a subspace and its orthogonal complement

Suppose U is a finite-dimensional subspace of V. Then

$$V = U \oplus U^{\perp}$$
.

Proof Suppose $v \in V$. Let e_1, \ldots, e_m be an orthonormal basis of U. Let

$$u = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_m \rangle e_m.$$

Then $\langle v-u,e_j\rangle=\langle v,e_j\rangle-\langle u,e_j\rangle=0$ for $j=1,\ldots,m$. Thus $v-u\in U^\perp$. Now

$$v = u + (v - u),$$

showing that $v \in U + U^{\perp}$. Thus $V = U + U^{\perp}$.

Direct sum of a subspace and its orthogonal complement

Suppose U is a finite-dimensional subspace of V. Then

$$V = U \oplus U^{\perp}$$
.

Proof Suppose $v \in V$. Let e_1, \ldots, e_m be an orthonormal basis of U. Let

$$u = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_m \rangle e_m.$$

Then $\langle v - u, e_j \rangle = \langle v, e_j \rangle - \langle u, e_j \rangle = 0$ for $j = 1, \dots, m$. Thus $v - u \in U^{\perp}$. Now

$$v = u + (v - u),$$

showing that $v \in U+U^{\perp}$. Thus $V=U+U^{\perp}$.

Dimension of the orthogonal complement

Suppose V is finite-dimensional and U is a subspace of V. Then

$$\dim U^{\perp} = \dim V - \dim U.$$

Direct sum of a subspace and its orthogonal complement

Suppose U is a finite-dimensional subspace of V. Then

$$V = U \oplus U^{\perp}$$
.

Proof Suppose $v \in V$. Let e_1, \ldots, e_m be an orthonormal basis of U. Let

$$u = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_m \rangle e_m.$$

Then $\langle v - u, e_j \rangle = \langle v, e_j \rangle - \langle u, e_j \rangle = 0$ for $j = 1, \dots, m$. Thus $v - u \in U^{\perp}$. Now

$$v = u + (v - u),$$

showing that $v \in U + U^{\perp}$. Thus $V = U + U^{\perp}$.

Dimension of the orthogonal complement

Suppose V is finite-dimensional and U is a subspace of V. Then

$$\dim U^{\perp} = \dim V - \dim U.$$

The orthogonal complement of the orthogonal complement

$$U = (U^{\perp})^{\perp}$$
.

Definition: orthogonal projection, P_U

Suppose U is a finite-dimensional subspace of V. The *orthogonal projection* of V onto U is the operator $P_U \in \mathcal{L}(V)$ defined as follows:

For $v \in V$, write v = u + w, where $u \in U$ and $w \in U^{\perp}$. Then $P_U v = u$.

Definition: orthogonal projection, P_U

Suppose U is a finite-dimensional subspace of V. The *orthogonal projection* of V onto U is the operator $P_U \in \mathcal{L}(V)$ defined as follows:

For $v \in V$, write v = u + w, where $u \in U$ and $w \in U^{\perp}$. Then $P_U v = u$.

If e_1, \ldots, e_m is an orthonormal basis of U, then

$$P_U v = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_m \rangle e_m.$$

Definition: orthogonal projection, P_U

Suppose U is a finite-dimensional subspace of V. The *orthogonal projection* of V onto U is the operator $P_U \in \mathcal{L}(V)$ defined as follows:

For $v \in V$, write v = u + w, where $u \in U$ and $w \in U^{\perp}$. Then $P_U v = u$.

If e_1, \ldots, e_m is an orthonormal basis of U, then

$$P_{U}v = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_m \rangle e_m.$$

Properties of the orthogonal projection P_U

$$ullet$$
 $P_U \in \mathcal{L}(V)$;

Definition: orthogonal projection, P_U

Suppose U is a finite-dimensional subspace of V. The *orthogonal projection* of V onto U is the operator $P_U \in \mathcal{L}(V)$ defined as follows:

For $v \in V$, write v = u + w, where $u \in U$ and $w \in U^{\perp}$. Then $P_U v = u$.

If e_1, \ldots, e_m is an orthonormal basis of U, then

$$P_{U}v = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_m \rangle e_m.$$

Properties of the orthogonal projection P_U

- ullet $P_U \in \mathcal{L}(V)$;
- $P_U u = u$ for every $u \in U$;

Definition: orthogonal projection, P_U

Suppose U is a finite-dimensional subspace of V. The *orthogonal projection* of V onto U is the operator $P_U \in \mathcal{L}(V)$ defined as follows:

For $v \in V$, write v = u + w, where $u \in U$ and $w \in U^{\perp}$. Then $P_U v = u$.

If e_1, \ldots, e_m is an orthonormal basis of U, then

$$P_{U}v = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_m \rangle e_m.$$

Properties of the orthogonal projection P_U

- ullet $P_U \in \mathcal{L}(V)$;
- $P_U u = u$ for every $u \in U$;
- $P_U w = 0$ for every $w \in U^{\perp}$;

Definition: orthogonal projection, P_U

Suppose U is a finite-dimensional subspace of V. The *orthogonal projection* of V onto U is the operator $P_U \in \mathcal{L}(V)$ defined as follows:

For $v \in V$, write v = u + w, where $u \in U$ and $w \in U^{\perp}$. Then $P_U v = u$.

If e_1, \ldots, e_m is an orthonormal basis of U, then

$$P_{U}v = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_m \rangle e_m.$$

Properties of the orthogonal projection P_U

- ullet $P_U \in \mathcal{L}(V)$;
- $P_U u = u$ for every $u \in U$;
- $P_U w = 0$ for every $w \in U^{\perp}$;
- range $P_U = U$;

Definition: orthogonal projection, P_U

Suppose U is a finite-dimensional subspace of V. The *orthogonal projection* of V onto U is the operator $P_U \in \mathcal{L}(V)$ defined as follows:

For $v \in V$, write v = u + w, where $u \in U$ and $w \in U^{\perp}$. Then $P_U v = u$.

If e_1, \ldots, e_m is an orthonormal basis of U, then

$$P_U v = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_m \rangle e_m.$$

Properties of the orthogonal projection P_U

- ullet $P_U \in \mathcal{L}(V)$;
- $P_U u = u$ for every $u \in U$;
- $P_U w = 0$ for every $w \in U^{\perp}$;
- range $P_U = U$;
- $\operatorname{null} P_U = U^{\perp};$

Definition: orthogonal projection, P_U

Suppose U is a finite-dimensional subspace of V. The *orthogonal projection* of V onto U is the operator $P_U \in \mathcal{L}(V)$ defined as follows:

For $v \in V$, write v = u + w, where $u \in U$ and $w \in U^{\perp}$. Then $P_U v = u$.

If e_1, \ldots, e_m is an orthonormal basis of U, then

$$P_{UV} = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_m \rangle e_m.$$

Properties of the orthogonal projection P_U

- ullet $P_U \in \mathcal{L}(V)$;
- $P_U u = u$ for every $u \in U$;
- $P_U w = 0$ for every $w \in U^{\perp}$;
- range $P_U = U$;
- $\operatorname{null} P_U = U^{\perp};$
- $v P_U v \in U^{\perp}$ for every $v \in V$;

Definition: orthogonal projection, P_U

Suppose U is a finite-dimensional subspace of V. The *orthogonal projection* of V onto U is the operator $P_U \in \mathcal{L}(V)$ defined as follows:

For $v \in V$, write v = u + w, where $u \in U$ and $w \in U^{\perp}$. Then $P_U v = u$.

If e_1, \ldots, e_m is an orthonormal basis of U, then

$$P_{UV} = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_m \rangle e_m.$$

Properties of the orthogonal projection P_U

- ullet $P_U \in \mathcal{L}(V)$;
- $P_U u = u$ for every $u \in U$;
- $P_U w = 0$ for every $w \in U^{\perp}$;
- range $P_U = U$;
- $\operatorname{null} P_U = U^{\perp};$
- $v P_U v \in U^{\perp}$ for every $v \in V$;
- $P_U^2 = P_U$;

Definition: orthogonal projection, P_U

Suppose U is a finite-dimensional subspace of V. The *orthogonal projection* of V onto U is the operator $P_U \in \mathcal{L}(V)$ defined as follows:

For $v \in V$, write v = u + w, where $u \in U$ and $w \in U^{\perp}$. Then $P_U v = u$.

If e_1, \ldots, e_m is an orthonormal basis of U, then

$$P_{UV} = \langle v, e_1 \rangle e_1 + \cdots + \langle v, e_m \rangle e_m.$$

Properties of the orthogonal projection P_U

- ullet $P_U \in \mathcal{L}(V)$;
- $P_U u = u$ for every $u \in U$;
- $P_U w = 0$ for every $w \in U^{\perp}$;
- range $P_U = U$;
- $\operatorname{null} P_U = U^{\perp};$
- $v P_U v \in U^{\perp}$ for every $v \in V$;
- $P_U^2 = P_U$;
- $||P_Uv|| \le ||v||$ for every $v \in V$.

Linear Algebra Done Right, by Sheldon Axler

