
The Minimal Polynomial



Monic Polynomials

Definition: monic polynomial

A monic polynomial is a polynomial whose
highest-degree coefficient equals 1.

Example: The polynomial

2 + 9z2 + z7

is a monic polynomial of degree 7.
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Existence of Minimal Polynomial

Minimal polynomial

Suppose T ∈ L(V). Then there is a
unique monic polynomial p of smallest
degree such that p(T) = 0.

Proof Let n = dim V. The list

I,T,T2, . . . ,Tn2

is not linearly independent in L(V),
because L(V) has dimension n2 and
the list has length n2 + 1. Let m be the
smallest positive integer such that

I,T,T2, . . . ,Tm

is linearly dependent.

The Linear Dependence Lemma implies
that Tm is a linear combination of
I,T,T2, . . . ,Tm−1. Thus there exist
scalars a0, a1, a2, . . . , am−1 ∈ F such that

a0I+a1T+a2T2+· · ·+am−1Tm−1+Tm = 0.

Define a monic polynomial p ∈ P(F) by

p(z) = a0+a1z+a2z2+· · ·+am−1zm−1+zm.

Then p(T) = 0.
No monic polynomial q ∈ P(F) with
degree smaller than m can satisfy
q(T) = 0. Suppose q ∈ P(F) is a monic
polynomial with degree m and q(T) = 0.
Then (p− q)(T) = 0 and deg(p− q) < m.
Thus q = p, completing the proof.
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Definition of Minimal Polynomial

Definition: minimal polynomial

Suppose T ∈ L(V). The minimal
polynomial of T is the unique
monic polynomial p of smallest
degree such that p(T) = 0.

Example: Let T be the operator on
C5 whose matrix is

0 0 0 0 −3
1 0 0 0 6
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 .

Find the minimal polynomial of T.

We have

3M(I)− 6M(T) = −M(T)5

with no solutions for lower powers.
Thus the minimal polynomial of T is

3− 6z + z5.

For general T ∈ L(V), consider the
system of linear equations

a0M(I)+a1M(T)+· · ·+am−1M(T)m−1 = −M(T)m

for successive values of m = 1, 2, . . .
until this system of equations has a
solution a0, a1, a2, . . . , am−1.
The scalars a0, a1, a2, . . . , am−1, 1 will
then be the coefficients of the minimal
polynomial of T.
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Polynomials That Annihilate T

q(T) = 0 implies q is a multiple of
the minimal polynomial

Suppose T ∈ L(V) and q ∈ P(F). Then
q(T) = 0 if and only if q is a polynomial
multiple of the minimal polynomial of T.

Proof Let p denote the minimal
polynomial of T.

Suppose q is a polynomial multiple
of p. Thus there exists a polynomial
s ∈ P(F) such that q = ps. We have

q(T) = p(T)s(T) = 0,

as desired.

To prove the other direction, now suppose
q(T) = 0. By the Division Algorithm for
Polynomials, there exist polynomials
s, r ∈ P(F) such that

q = ps + r

and deg r < deg p. We have

0 = q(T)

= p(T)s(T) + r(T)

= r(T).

The equation above implies that r = 0.
Thus q = ps. Hence q is a polynomial
multiple of p, as desired.
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Suppose T ∈ L(V) and q ∈ P(F). Then
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multiple of minimal polynomial
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Zeros of the Minimal Polynomial

Eigenvalues are the zeros of the
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Examples

Example: Suppose T ∈ L(C3) is
defined by
T(z1, z2, z3) = (6z1+3z2+4z3, 6z2+2z3, 7z3).

The eigenvalues of T are 6 and 7.
Thus the minimal polynomial of T is a
polynomial multiple of (z− 6)(z− 7).
The characteristic polynomial of T is

(z− 6)2(z− 7).

Thus the minimal polynomial of T is
either (z− 6)(z− 7) or (z− 6)2(z− 7).
A simple computation shows that

(T − 6I)(T − 7I) 6= 0.

Thus the minimal polynomial of T is
(z− 6)2(z− 7).
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Example: Suppose T ∈ L(C3) is
defined by
T(z1, z2, z3) = (6z1+3z2+4z3, 6z2+2z3, 7z3).

The eigenvalues of T are 6 and 7.
Thus the minimal polynomial of T is a
polynomial multiple of (z− 6)(z− 7).
The characteristic polynomial of T is

(z− 6)2(z− 7).

Thus the minimal polynomial of T is
either (z− 6)(z− 7) or (z− 6)2(z− 7).
A simple computation shows that

(T − 6I)(T − 7I) 6= 0.

Thus the minimal polynomial of T is
(z− 6)2(z− 7).

Example: Suppose T ∈ L(C3)is
defined by

T(z1, z2, z3) = (6z1, 6z2, 7z3).

For this operator T, the eigenvalues of
T are 6 and 7.
The characteristic polynomial of T is

(z− 6)2(z− 7).

Thus the minimal polynomial of T is
either (z− 6)(z− 7) or (z− 6)2(z− 7).
A simple computation shows that

(T − 6I)(T − 7I) = 0.

Thus the minimal polynomial of T is
(z− 6)(z− 7).
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