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A monic polynomial is a polynomial whose
highest-degree coefficient equals 1.
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Proof Let p be the minimal polynomial
of T.

Suppose \ € F is an eigenvalue of T.
Thus there exists v € V with v £ 0 such
that
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Repeated applications of T to both
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Zeros of the Minimal Polynomial

(Eigenvalues are the zeros of the\
minimal polynomial

Let T € L(V). Then the zeros of the
minimal polynomial of T are precisely
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Proof Let p be the minimal polynomial

of T.

Suppose X € F is an eigenvalue of T.
Thus there exists v € V with v £ 0 such
that

Tv = A\v.

Repeated applications of T to both
sides of this equation show that

Ty = Ny

for every nonnegative integer j. Thus
p(T)v = p(A)v.

Now

0=p(T)v

=p(A)v.

Because v # 0, the equation above
implies that p(\) = 0.
We have shown that every eigenvalue
of T is a zero of p. i
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polynomial multiple of (z — 6)(z — 7).
The characteristic polynomial of 7' is
(z—6)%(z—17).
Thus the minimal polynomial of T is
either (z — 6)(z —7) or (z — 6)*(z — 7).
A simple computation shows that
(T —6I)(T—"1I)#0.
Thus the minimal polynomial of 7' is
(z—6)%(z—17).



Example: Suppose T € £(C?) is Example: Suppose T € £L(C?)is
defined by defined by

T(z1,22,23) = (621+320+423, 62204223, 723). T(z1,22,23) = (621,622, 723).

The eigenvalues of T are 6 and 7. For this operator 7, the eigenvalues of
Thus the minimal polynomial of T is a T are 6 and 7.

polynomial multiple of (z — 6)(z — 7).
The characteristic polynomial of 7' is
(z—6)%(z—17).
Thus the minimal polynomial of T is
either (z — 6)(z —7) or (z — 6)*(z — 7).
A simple computation shows that
(T —6I)(T—"1I)#0.
Thus the minimal polynomial of 7' is
(z—6)%(z—17).



Example: Suppose T € £(C?) is Example: Suppose T € £L(C?)is

defined by defined by

T(z1,22,23) = (62143224423, 62204+223, 723). T(z1,22,23) = (621,622, 723).

The eigenvalues of T are 6 and 7. For this operator 7, the eigenvalues of

Thus the minimal polynomial of T is a T are 6and 7.

polynomial multiple of (z — 6)(z — 7). The characteristic polynomial of T'is

The characteristic polynomial of 7' is (z—6)%(z—1).
(z—6)*(z—17).

Thus the minimal polynomial of T is
either (z — 6)(z —7) or (z — 6)*(z — 7).
A simple computation shows that
(T —6I)(T—"1I)#0.
Thus the minimal polynomial of 7' is
(z—6)%(z—17).



Example: Suppose T € £(C?) is Example: Suppose T € £L(C?)is

defined by defined by

T(z1,22,23) = (62143224423, 62204+223, 723). T(z1,22,23) = (621,622, 723).

The eigenvalues of T are 6 and 7. For this operator 7, the eigenvalues of

Thus the minimal polynomial of T is a T are 6and 7.

polynomial multiple of (z — 6)(z — 7). The characteristic polynomial of T is

The characteristic polynomial of 7' is (z—6)%(z—1).
(z—6)*(z—7). Thus the minimal polynomial of T is

Thus the minimal polynomial of T is either (z — 6)(z —7) or (z — 6)*(z — 7).

either (z — 6)(z—7) or (z— 6)*(z — 7).
A simple computation shows that
(T —6I)(T—"1I)#0.
Thus the minimal polynomial of 7' is
(z—6)*(z—17).



Example: Suppose T € £(C?) is Example: Suppose T € £L(C?)is

defined by defined by

T(z1,22,23) = (6214+322+4z3, 6204223, 723). T(z1,22,23) = (621,622, 723).

The eigenvalues of T are 6 and 7. For this operator 7, the eigenvalues of

Thus the minimal polynomial of T is a T are 6and 7.

polynomial multiple of (z — 6)(z — 7). The characteristic polynomial of T is

The characteristic polynomial of 7' is (z—6)%(z—1).
(z—6)*(z—7). Thus the minimal polynomial of T is

Thus the minimal polynomial of T is either (z — 6)(z —7) or (z— 6)*(z — 7).

either (z — 6)(z —7) or (z — 6)*(z — 7). A simple computation shows that

A simple computation shows that (T — 61)(T — 7I) = 0.

(T —6I)(T—"1I)#0.
Thus the minimal polynomial of 7' is
(z—6)%(z—17).



Example: Suppose T € £(C?) is Example: Suppose T € £L(C?)is
defined by defined by
T(z1,22,23) = (621+320+423, 62204223, 723). T(z1,22,23) = (621,622, 723).
The eigenvalues of T are 6 and 7. For this operator 7, the eigenvalues of
Thus the minimal polynomial of T is a T are 6and 7.
polynomial multiple of (z — 6)(z — 7). The characteristic polynomial of T is
The characteristic polynomial of 7' is (z—6)%(z—1).
(z—6)*(z—7). Thus the minimal polynomial of T is
Thus the minimal polynomial of T is either (z — 6)(z —7) or (z— 6)*(z — 7).
either (z — 6)(z —7) or (z — 6)*(z — 7). A simple computation shows that
A simple computation shows that (T — 6I)(T — 7I) = 0.
(T —6I)(T —TI) #0. Thus the minimal polynomial of 7 is
Thus the minimal polynomial of T is (z—6)(z—17).
(z—6)*(z—17).
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