
Invariant Subspaces



Notation

F denotes either R or C.

V denotes a vector space over F.

operator = linear map from a vector space to itself

L(V) = L(V,V)
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Invariant Subspace
Suppose T ∈ L(V). We will try to investigate T by decomposing V as

V = U1 ⊕ · · · ⊕ Um,

and then looking at each T|Uj .

However, to use results about operators,
we need for T|Uj to map Uj into itself.

Definition: invariant subspace

Suppose T ∈ L(V). A subspace U of V is called invariant under T if
u ∈ U implies Tu ∈ U.

Example: Each of these subspaces of V is invariant under T ∈ L(V):

{0};
V;
null T;
range T.

Example: Suppose that T ∈ L
(
P(R)

)
is defined by

Tp = p′. Then P4(R) is invariant under T because
if p ∈ P(R) has degree at most 4, then p′ also has
degree at most 4.
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Invariant Subspaces of Dimension 1
Suppose v ∈ V and v 6= 0. Let

U = {λv : λ ∈ F} = span(v).

Then U is a one-dimensional subspace of V.

U is invariant under T if and only if
Tv = λv

for some λ ∈ F.

Definition: eigenvalue

Suppose T ∈ L(V). A number λ ∈ F is
called an eigenvalue of T if there exists
v ∈ V such that v 6= 0 and Tv = λv.

Equivalent conditions to be an eigenvalue

Suppose V is finite-dimensional, T ∈ L(V), and λ ∈ F. Then the
following are equivalent:

λ is an eigenvalue of T;
T − λI is not injective;
T − λI is not surjective;
T − λI is not invertible.
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An Operator with No Eigenvalues

Example: Suppose T ∈ L(R2) is defined by

T(x, y) = (−y, x).

T is a counterclockwise rotation by 90◦ about the origin in R2.

An operator has an eigenvalue if and only if there exists a nonzero
vector in its domain that gets sent by the operator to a scalar multiple
of itself.

A 90◦ counterclockwise rotation of a nonzero vector in R2 obviously
never equals a scalar multiple of itself.

Conclusion: T has no eigenvalues.
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Complex Eigenvalues

Example: Suppose T ∈ L(C2) is defined by

T(w, z) = (−z,w).

Then

T(1,−i) = (i, 1)

= i(1,−i).

Thus i is an eigenvalue of T.

Also

T(1, i) = (−i, 1)

= −i(1, i).

Thus −i is an eigenvalue of T.
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Eigenvectors

Definition: eigenvector

Suppose T ∈ L(V) and λ ∈ F is an eigenvalue of T. A vector v ∈ V
is called an eigenvector of T corresponding to λ if v 6= 0 and Tv = λv.

Example:
If T ∈ L(C2) is defined by T(w, z) = (−z,w), then (1,−i) is an
eigenvector corresponding to the eigenvalue i because

T(1,−i) = i(1,−i).

If b ∈ C and b 6= 0, then (b,−bi) is also an eigenvector corresponding
to the eigenvalue i because

T(b,−bi) = i(b,−bi).
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Linearly Independent Eigenvectors

Linearly independent
eigenvectors

Let T ∈ L(V). Suppose λ1, . . . , λm are
distinct eigenvalues of T and v1, . . . , vm

are corresponding eigenvectors. Then
v1, . . . , vm is linearly independent.

Proof Suppose v1, . . . , vm is linearly de-
pendent. Let k be the smallest positive
integer such that

vk ∈ span(v1, . . . , vk−1).

Thus there exist a1, . . . , ak−1 ∈ F such that

vk = a1v1 + · · ·+ ak−1vk−1.

Apply T to both sides of this equation, get-
ting

λkvk = a1λ1v1+· · ·+ak−1λk−1vk−1.

Multiply both sides of the first equation by
λk and then subtract the equation above,
getting

0 = a1(λk−λ1)v1+· · ·+ak−1(λk−λk−1)vk−1.

However, v1, . . . , vk−1 is linearly indepen-
dent. Thus all the a’s are 0. However,
this means that vk equals 0, contradicting
our hypothesis that vk is an eigenvector.
Therefore our assumption that v1, . . . , vm

is linearly dependent was false.
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Number of Eigenvalues

Number of eigenvalues

Suppose V is finite-dimensional. Then each operator on V has at
most dim V distinct eigenvalues.

Proof Let T ∈ L(V). Suppose λ1, . . . , λm are distinct eigenvalues of T.
Let v1, . . . , vm be corresponding eigenvectors. Then the list v1, . . . , vm is
linearly independent. Thus m ≤ dim V, as desired.
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