

• F denotes either R or C.

Notation

- F denotes either R or C.
- V denotes a vector space over **F**.

Notation

- F denotes either R or C.
- V denotes a vector space over **F**.
- operator = linear map from a vector space to itself

Notation

- F denotes either R or C.
- V denotes a vector space over **F**.
- operator = linear map from a vector space to itself
- $\mathcal{L}(V) = \mathcal{L}(V, V)$

Suppose $T \in \mathcal{L}(V)$. We will try to investigate T by decomposing V as

 $V=U_1\oplus\cdots\oplus U_m,$

and then looking at each $T|_{U_i}$.

Suppose $T \in \mathcal{L}(V)$. We will try to investigate *T* by decomposing *V* as

 $V=U_1\oplus\cdots\oplus U_m,$

and then looking at each $T|_{U_j}$. However, to use results about operators, we need for $T|_{U_i}$ to map U_j into itself.

Suppose $T \in \mathcal{L}(V)$. We will try to investigate *T* by decomposing *V* as

 $V=U_1\oplus\cdots\oplus U_m,$

and then looking at each $T|_{U_i}$. However, to use results about operators, we need for $T|_{U_i}$ to map U_i into itself.

Definition: invariant subspace

Suppose $T \in \mathcal{L}(V)$. A subspace U of V is called *invariant* under T if $u \in U$ implies $Tu \in U$.

Suppose $T \in \mathcal{L}(V)$. We will try to investigate *T* by decomposing *V* as

 $V=U_1\oplus\cdots\oplus U_m,$

and then looking at each $T|_{U_j}$. However, to use results about operators, we need for $T|_{U_i}$ to map U_j into itself.

Definition: *invariant subspace*

Suppose $T \in \mathcal{L}(V)$. A subspace U of V is called *invariant* under T if $u \in U$ implies $Tu \in U$.

Example: Each of these subspaces of V is invariant under $T \in \mathcal{L}(V)$: • $\{0\}$;

Suppose $T \in \mathcal{L}(V)$. We will try to investigate *T* by decomposing *V* as

 $V=U_1\oplus\cdots\oplus U_m,$

and then looking at each $T|_{U_j}$. However, to use results about operators, we need for $T|_{U_i}$ to map U_j into itself.

Definition: invariant subspace

Suppose $T \in \mathcal{L}(V)$. A subspace U of V is called *invariant* under T if $u \in U$ implies $Tu \in U$.

Example: Each of these subspaces of V is invariant under T ∈ L(V):
{0};
V:

Suppose $T \in \mathcal{L}(V)$. We will try to investigate *T* by decomposing *V* as

 $V=U_1\oplus\cdots\oplus U_m,$

and then looking at each $T|_{U_j}$. However, to use results about operators, we need for $T|_{U_i}$ to map U_j into itself.

Definition: invariant subspace

Suppose $T \in \mathcal{L}(V)$. A subspace U of V is called *invariant* under T if $u \in U$ implies $Tu \in U$.

Example: Each of these subspaces of *V* is invariant under $T \in \mathcal{L}(V)$:

- {0};
- V;
- null T;

Suppose $T \in \mathcal{L}(V)$. We will try to investigate *T* by decomposing *V* as

 $V=U_1\oplus\cdots\oplus U_m,$

and then looking at each $T|_{U_j}$. However, to use results about operators, we need for $T|_{U_i}$ to map U_j into itself.

Definition: invariant subspace

Suppose $T \in \mathcal{L}(V)$. A subspace U of V is called *invariant* under T if $u \in U$ implies $Tu \in U$.

Example: Each of these subspaces of *V* is invariant under $T \in \mathcal{L}(V)$:

- {0};
- V;
- null T;
- range T.

Suppose $T \in \mathcal{L}(V)$. We will try to investigate *T* by decomposing *V* as

 $V=U_1\oplus\cdots\oplus U_m,$

and then looking at each $T|_{U_j}$. However, to use results about operators, we need for $T|_{U_i}$ to map U_j into itself.

Definition: invariant subspace

Suppose $T \in \mathcal{L}(V)$. A subspace U of V is called *invariant* under T if $u \in U$ implies $Tu \in U$.

Example: Each of these subspaces of *V* is invariant under $T \in \mathcal{L}(V)$:

- {0};
- V;
- null T;
- range T.

Suppose $T \in \mathcal{L}(V)$. We will try to investigate *T* by decomposing *V* as

 $V=U_1\oplus\cdots\oplus U_m,$

and then looking at each $T|_{U_j}$. However, to use results about operators, we need for $T|_{U_i}$ to map U_j into itself.

Definition: invariant subspace

Suppose $T \in \mathcal{L}(V)$. A subspace U of V is called *invariant* under T if $u \in U$ implies $Tu \in U$.

Example: Each of these subspaces of *V* is invariant under $T \in \mathcal{L}(V)$:

- {0};
- V;
- null T;
- range T.

Example: Suppose that $T \in \mathcal{L}(\mathcal{P}(\mathbf{R}))$ is defined by Tp = p'. Then $\mathcal{P}_4(\mathbf{R})$ is invariant under *T* because if $p \in \mathcal{P}(\mathbf{R})$ has degree at most 4, then p' also has degree at most 4.

Suppose $v \in V$ and $v \neq 0$. Let

 $U = \{\lambda v : \lambda \in \mathbf{F}\} = \operatorname{span}(v).$

Then U is a one-dimensional subspace of V.

Suppose $v \in V$ and $v \neq 0$. Let

 $U = \{\lambda v : \lambda \in \mathbf{F}\} = \operatorname{span}(v).$

Then *U* is a one-dimensional subspace of *V*. *U* is invariant under *T* if and only if

$$Tv = \lambda v$$

for some $\lambda \in \mathbf{F}$.

Suppose $v \in V$ and $v \neq 0$. Let

 $U = \{\lambda v : \lambda \in \mathbf{F}\} = \operatorname{span}(v).$

Then U is a one-dimensional subspace of V. U is invariant under T if and only if

$$Tv = \lambda v$$

for some $\lambda \in \mathbf{F}$.

Definition: *eigenvalue*

Suppose $T \in \mathcal{L}(V)$. A number $\lambda \in \mathbf{F}$ is called an *eigenvalue* of *T* if there exists $v \in V$ such that $v \neq 0$ and $Tv = \lambda v$.

Suppose $v \in V$ and $v \neq 0$. Let

 $U = \{\lambda v : \lambda \in \mathbf{F}\} = \operatorname{span}(v).$

Then U is a one-dimensional subspace of V. U is invariant under T if and only if

$$Tv = \lambda v$$

for some $\lambda \in \mathbf{F}$.

Definition: *eigenvalue*

Suppose $T \in \mathcal{L}(V)$. A number $\lambda \in \mathbf{F}$ is called an *eigenvalue* of *T* if there exists $v \in V$ such that $v \neq 0$ and $Tv = \lambda v$.

Equivalent conditions to be an eigenvalue

Suppose *V* is finite-dimensional, $T \in \mathcal{L}(V)$, and $\lambda \in F$. Then the following are equivalent:

- λ is an eigenvalue of *T*;
- $T \lambda I$ is not injective;
- $T \lambda I$ is not surjective;
- $T \lambda I$ is not invertible.

An Operator with No Eigenvalues

Example: Suppose $T \in \mathcal{L}(\mathbf{R}^2)$ is defined by

T(x, y) = (-y, x).

T is a counterclockwise rotation by 90° about the origin in \mathbb{R}^2 .

An Operator with No Eigenvalues

Example: Suppose $T \in \mathcal{L}(\mathbf{R}^2)$ is defined by

T(x, y) = (-y, x).

T is a counterclockwise rotation by 90° about the origin in \mathbb{R}^2 .

An operator has an eigenvalue if and only if there exists a nonzero vector in its domain that gets sent by the operator to a scalar multiple of itself.

An Operator with No Eigenvalues

Example: Suppose $T \in \mathcal{L}(\mathbf{R}^2)$ is defined by

T(x, y) = (-y, x).

T is a counterclockwise rotation by 90° about the origin in \mathbb{R}^2 .

An operator has an eigenvalue if and only if there exists a nonzero vector in its domain that gets sent by the operator to a scalar multiple of itself.

A 90° counterclockwise rotation of a nonzero vector in \mathbf{R}^2 obviously never equals a scalar multiple of itself.

Conclusion: T has no eigenvalues.

Complex Eigenvalues

Example: Suppose $T \in \mathcal{L}(\mathbb{C}^2)$ is defined by T(w, z) = (-z, w).

Complex Eigenvalues

Example: Suppose $T \in \mathcal{L}(\mathbb{C}^2)$ is defined by T(w, z) = (-z, w).

Then

$$T(1, -i) = (i, 1)$$

= $i(1, -i)$.

Thus i is an eigenvalue of T.

Complex Eigenvalues

Example: Suppose $T \in \mathcal{L}(\mathbb{C}^2)$ is defined by T(w, z) = (-z, w).

Then

$$T(1, -i) = (i, 1)$$

= $i(1, -i)$.

Thus i is an eigenvalue of T.

Also

$$T(1, i) = (-i, 1)$$

= $-i(1, i).$

Thus -i is an eigenvalue of T.

Eigenvectors

Definition: eigenvector

Suppose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbf{F}$ is an eigenvalue of T. A vector $v \in V$ is called an *eigenvector* of T corresponding to λ if $v \neq 0$ and $Tv = \lambda v$.

Eigenvectors

Definition: eigenvector

Suppose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbf{F}$ is an eigenvalue of T. A vector $v \in V$ is called an *eigenvector* of T corresponding to λ if $v \neq 0$ and $Tv = \lambda v$.

Example: If $T \in \mathcal{L}(\mathbb{C}^2)$ is defined by T(w, z) = (-z, w), then (1, -i) is an eigenvector corresponding to the eigenvalue *i* because

T(1,-i) = i(1,-i).

Eigenvectors

Definition: eigenvector

Suppose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbf{F}$ is an eigenvalue of T. A vector $v \in V$ is called an *eigenvector* of T corresponding to λ if $v \neq 0$ and $Tv = \lambda v$.

Example:

If $T \in \mathcal{L}(\mathbb{C}^2)$ is defined by T(w, z) = (-z, w), then (1, -i) is an eigenvector corresponding to the eigenvalue *i* because

$$T(1,-i) = i(1,-i).$$

If $b \in \mathbb{C}$ and $b \neq 0$, then (b, -bi) is also an eigenvector corresponding to the eigenvalue *i* because

$$T(b,-bi)=i(b,-bi).$$

Linearly independent eigenvectors

Let $T \in \mathcal{L}(V)$. Suppose $\lambda_1, \ldots, \lambda_m$ are distinct eigenvalues of T and v_1, \ldots, v_m are corresponding eigenvectors. Then v_1, \ldots, v_m is linearly independent.

Linearly independent eigenvectors

Let $T \in \mathcal{L}(V)$. Suppose $\lambda_1, \ldots, \lambda_m$ are distinct eigenvalues of T and v_1, \ldots, v_m are corresponding eigenvectors. Then v_1, \ldots, v_m is linearly independent.

Proof Suppose v_1, \ldots, v_m is linearly dependent. Let *k* be the smallest positive integer such that

 $v_k \in \operatorname{span}(v_1,\ldots,v_{k-1}).$

Linearly independent eigenvectors

Let $T \in \mathcal{L}(V)$. Suppose $\lambda_1, \ldots, \lambda_m$ are distinct eigenvalues of T and v_1, \ldots, v_m are corresponding eigenvectors. Then v_1, \ldots, v_m is linearly independent.

Proof Suppose v_1, \ldots, v_m is linearly dependent. Let *k* be the smallest positive integer such that

 $v_k \in \operatorname{span}(v_1,\ldots,v_{k-1}).$

Thus there exist $a_1, \ldots, a_{k-1} \in \mathbf{F}$ such that

 $v_k = a_1v_1 + \cdots + a_{k-1}v_{k-1}.$

Linearly independent eigenvectors

Let $T \in \mathcal{L}(V)$. Suppose $\lambda_1, \ldots, \lambda_m$ are distinct eigenvalues of T and v_1, \ldots, v_m are corresponding eigenvectors. Then v_1, \ldots, v_m is linearly independent.

Proof Suppose v_1, \ldots, v_m is linearly dependent. Let *k* be the smallest positive integer such that

 $v_k \in \operatorname{span}(v_1,\ldots,v_{k-1}).$

Thus there exist $a_1, \ldots, a_{k-1} \in \mathbf{F}$ such that

$$v_k = a_1v_1 + \cdots + a_{k-1}v_{k-1}.$$

Apply *T* to both sides of this equation, getting

 $\lambda_k v_k = a_1 \lambda_1 v_1 + \dots + a_{k-1} \lambda_{k-1} v_{k-1}.$

Linearly independent eigenvectors

Let $T \in \mathcal{L}(V)$. Suppose $\lambda_1, \ldots, \lambda_m$ are distinct eigenvalues of T and v_1, \ldots, v_m are corresponding eigenvectors. Then v_1, \ldots, v_m is linearly independent.

Proof Suppose v_1, \ldots, v_m is linearly dependent. Let *k* be the smallest positive integer such that

 $v_k \in \operatorname{span}(v_1,\ldots,v_{k-1}).$

Thus there exist $a_1, \ldots, a_{k-1} \in \mathbf{F}$ such that

$$v_k = a_1v_1 + \cdots + a_{k-1}v_{k-1}.$$

Apply *T* to both sides of this equation, getting

 $\lambda_k v_k = a_1 \lambda_1 v_1 + \dots + a_{k-1} \lambda_{k-1} v_{k-1}.$

Multiply both sides of the first equation by λ_k and then subtract the equation above, getting

$$0 = a_1(\lambda_k - \lambda_1)v_1 + \cdots + a_{k-1}(\lambda_k - \lambda_{k-1})v_{k-1}.$$

Linearly independent eigenvectors

Let $T \in \mathcal{L}(V)$. Suppose $\lambda_1, \ldots, \lambda_m$ are distinct eigenvalues of T and v_1, \ldots, v_m are corresponding eigenvectors. Then v_1, \ldots, v_m is linearly independent.

Proof Suppose v_1, \ldots, v_m is linearly dependent. Let *k* be the smallest positive integer such that

 $v_k \in \operatorname{span}(v_1,\ldots,v_{k-1}).$

Thus there exist $a_1, \ldots, a_{k-1} \in \mathbf{F}$ such that

$$v_k = a_1v_1 + \cdots + a_{k-1}v_{k-1}.$$

Apply *T* to both sides of this equation, getting

$$\lambda_k v_k = a_1 \lambda_1 v_1 + \dots + a_{k-1} \lambda_{k-1} v_{k-1}.$$

Multiply both sides of the first equation by λ_k and then subtract the equation above, getting

 $0 = a_1(\lambda_k - \lambda_1)v_1 + \cdots + a_{k-1}(\lambda_k - \lambda_{k-1})v_{k-1}.$

However, v_1, \ldots, v_{k-1} is linearly independent. Thus all the *a*'s are 0.

Linearly independent eigenvectors

Let $T \in \mathcal{L}(V)$. Suppose $\lambda_1, \ldots, \lambda_m$ are distinct eigenvalues of T and v_1, \ldots, v_m are corresponding eigenvectors. Then v_1, \ldots, v_m is linearly independent.

Proof Suppose v_1, \ldots, v_m is linearly dependent. Let *k* be the smallest positive integer such that

 $v_k \in \operatorname{span}(v_1,\ldots,v_{k-1}).$

Thus there exist $a_1, \ldots, a_{k-1} \in \mathbf{F}$ such that

$$v_k = a_1v_1 + \cdots + a_{k-1}v_{k-1}.$$

Apply *T* to both sides of this equation, getting

 $\lambda_k v_k = a_1 \lambda_1 v_1 + \dots + a_{k-1} \lambda_{k-1} v_{k-1}.$

Multiply both sides of the first equation by λ_k and then subtract the equation above, getting

 $0 = a_1(\lambda_k - \lambda_1)v_1 + \cdots + a_{k-1}(\lambda_k - \lambda_{k-1})v_{k-1}.$

However, v_1, \ldots, v_{k-1} is linearly independent. Thus all the *a*'s are 0. However, this means that v_k equals 0, contradicting our hypothesis that v_k is an eigenvector.

Linearly independent eigenvectors

Let $T \in \mathcal{L}(V)$. Suppose $\lambda_1, \ldots, \lambda_m$ are distinct eigenvalues of T and v_1, \ldots, v_m are corresponding eigenvectors. Then v_1, \ldots, v_m is linearly independent.

Proof Suppose v_1, \ldots, v_m is linearly dependent. Let *k* be the smallest positive integer such that

 $v_k \in \operatorname{span}(v_1,\ldots,v_{k-1}).$

Thus there exist $a_1, \ldots, a_{k-1} \in \mathbf{F}$ such that

 $v_k = a_1v_1 + \cdots + a_{k-1}v_{k-1}.$

Apply *T* to both sides of this equation, getting

 $\lambda_k v_k = a_1 \lambda_1 v_1 + \dots + a_{k-1} \lambda_{k-1} v_{k-1}.$

Multiply both sides of the first equation by λ_k and then subtract the equation above, getting

 $0 = a_1(\lambda_k - \lambda_1)v_1 + \cdots + a_{k-1}(\lambda_k - \lambda_{k-1})v_{k-1}.$

However, v_1, \ldots, v_{k-1} is linearly independent. Thus all the *a*'s are 0. However, this means that v_k equals 0, contradicting our hypothesis that v_k is an eigenvector. Therefore our assumption that v_1, \ldots, v_m is linearly dependent was false.

Number of Eigenvalues

Number of eigenvalues

Suppose *V* is finite-dimensional. Then each operator on *V* has at most $\dim V$ distinct eigenvalues.

Number of Eigenvalues

Number of eigenvalues

Suppose *V* is finite-dimensional. Then each operator on *V* has at most $\dim V$ distinct eigenvalues.

Proof Let $T \in \mathcal{L}(V)$. Suppose $\lambda_1, \ldots, \lambda_m$ are distinct eigenvalues of *T*. Let v_1, \ldots, v_m be corresponding eigenvectors. Then the list v_1, \ldots, v_m is linearly independent. Thus $m \leq \dim V$, as desired.

Linear Algebra Done Right, by Sheldon Axler

