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Suppose T € L(V). We will try to investigate T by decomposing V as
V=U® - & Uy,

and then looking at each T]Uj. However, to use results about operators,
we need for T'|y; to map U; into itself.

(Definition: invariant subspace h

Suppose T € L(V). A subspace U of V is called invariant under T if
u € Uimplies Tu € U.

\_ J
Example: Each of these subspaces of V is invariant under 7 € L(V):
o {0} Example: Suppose that T € £(P(R)) is defined by
oV, Tp = p’. Then P4(R) is invariant under T because
@ nullT; if p € P(R) has degree at most 4, then p’ also has

@ rangeT degree at most 4.
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Invariant Subspaces of Dimension 1

Suppose v € Vand v # 0. Let -
U={\:\eF}=span(v). (Definition: eigenvalue w
Then U is a one-dimensional subspace of V.
U is invariant under T if and only if
Tv = \v

Suppose T € L(V). Anumber A € F is
called an eigenvalue of T if there exists
v € Vsuchthatv # 0and Tv = Av.

for some A € F.

(Equivalent conditions to be an eigenvalue h

Suppose V is finite-dimensional, T € £(V), and A € F. Then the
following are equivalent:

@ )\ is an eigenvalue of T;

@ T — M is not injective;

@ T — Ml is not surjective;
_ ° T — M is not invertible.
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An Operator with No Eigenvalues

Example: Suppose T € £L(R?) is defined by

T(xay) = (_yax)'
T is a counterclockwise rotation by 90° about the origin in R2.
An operator has an eigenvalue if and only if there exists a nonzero

vector in its domain that gets sent by the operator to a scalar multiple
of itself.

A 90° counterclockwise rotation of a nonzero vector in R? obviously
never equals a scalar multiple of itself.

Conclusion: T has no eigenvalues.
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Example: Suppose T € £(C?) is defined by
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Then
T(1,—i) = (i,1)
=i(1, —i).

Thus i is an eigenvalue of T.

Also

Thus —i is an eigenvalue of T.



( Definition: eigenvector

LSuppose T € L(V)and X € F is an eigenvalue of T. A vectorv € VJ

is called an eigenvector of T corresponding to A if v # 0 and Tv = Av.




( Definition: eigenvector

Suppose T € £(V) and X € F is an eigenvalue of 7. A vectorv € V
is called an eigenvector of T corresponding to A if v # 0 and Tv = Av.

Example:
If T € £(C?) is defined by T(w, z) = (—z,w), then (1, —i) is an
eigenvector corresponding to the eigenvalue i because

T(1,—i) = i(1, —i).




( Definition: eigenvector

Suppose T € £(V) and X € F is an eigenvalue of 7. A vectorv € V
is called an eigenvector of T corresponding to A if v # 0 and Tv = Av.

Example:
If T € £(C?) is defined by T(w,z) = (—z,w), then (1, —i) is an
eigenvector corresponding to the eigenvalue i because

T(1,—i) = i(1, —i).

If b € C and b # 0, then (b, —bi) is also an eigenvector corresponding
to the eigenvalue i because

(b, —bi) = i(b, —bi).



Linearly Independent Eigenvectors

N

(Linearly independent
eigenvectors

Let T € L(V). Suppose Ay, ..., \, are
distinct eigenvalues of T and vy, ..., v,
are corresponding eigenvectors. Then

kvl’ ..., vy is linearly independent. )




Linearly Independent Eigenvectors

N

(Linearly independent
eigenvectors

Let T € L(V). Suppose Ay, ..., \, are
distinct eigenvalues of T and vy, ..., v,
are corresponding eigenvectors. Then

kvl’ ..., vy is linearly independent. )

Proof Suppose vi,...,v, is linearly de-
pendent. Let k be the smallest positive
integer such that

Vi € span(vy, ..., Vk—1).




Linearly Independent Eigenvectors

N

(Linearly independent
eigenvectors

Let T € L(V). Suppose Ay, ..., \, are
distinct eigenvalues of T and vy, ..., v,
are corresponding eigenvectors. Then
kvl’ ..., vy is linearly independent. )
Proof Suppose vy,...,v, is linearly de-
pendent. Let k be the smallest positive
integer such that
vk € span(vy, ..., Vk—1).

Thus there exist ay, ...,a,_1 € F such that

Vk = aivy + -+ Qg—1Vi—1.-



Linearly Independent Eigenvectors

(Linearly independent h Apply T to both sides of this equation, get-
eigenvectors ting

Let T € £(V). Suppose A, ..., A, are MV = @At s e A1 Vi1

distinct eigenvalues of T and vy, ..., v,
are corresponding eigenvectors. Then

kvl’ ..., vy is linearly independent. )
Proof Suppose vy,...,v, is linearly de-

pendent. Let k be the smallest positive
integer such that
vk € span(vy, ..., Vk—1).

Thus there exist ay, ...,a;_; € F such that

Vi =aivy+ -+ Ap—1Vi—1-



Linearly Independent Eigenvectors

(Linearly independent h Apply T to both sides of this equation, get-
eigenvectors ting

Let T € £(V). Suppose Aj,..., A, are MV = QAL U M Vi

distinct eigenvalues of T and vy, ..., v, Multiply both sides of the first equation by
are corresponding eigenvectors. Then A« and then subtract the equation above,
Vo Vm is linearly independent. P getting

Proof Suppose vi,...,v, is linearly de- 0=ae=dvt a1 A1
pendent. Let k be the smallest positive
integer such that

vk € span(vy, ..., Vk—1).

Thus there exist ay, ...,a;_; € F such that

Vi =aivy+ -+ Ap—1Vi—1-



Linearly Independent Eigenvectors

(Linearly independent Apply T to both sides of this equation, get-
eigenvectors ting

Let T € £(V). Suppose Aj,..., A, are MV = QAL U M Vi

distinct eigenvalues of T and vy, ..., v, Multiply both sides of the first equation by

are corresponding eigenvectors. Then Ar and then subtract the equation above,
kvl’ ..., vy is linearly independent. ) getting

o 0 =ar(M—A)vi+ a1 (Ae—Ae—1)vik—1.
Proof Suppose vi,...,v, is linearly de- arlde=dom _ak_l( ¢ k Vet
pendent. Let k be the smallest positive However, vy, ..., v is linearly indepen-
integer such that dent. Thus all the d’s are 0.
vk € span(vy, ..., Vk—1).

Thus there exist ay, ...,a;_; € F such that

Vi =aivy + -+ + Qg—1Vi—1-



Linearly Independent Eigenvectors

(Linearly independent
eigenvectors

Let T € L(V). Suppose Ay, ..., \, are
distinct eigenvalues of T and vy, ..., v,
are corresponding eigenvectors. Then
kvl’ ..., vy is linearly independent. )
Proof Suppose vy,...,v, is linearly de-
pendent. Let k be the smallest positive
integer such that

vk € span(vy, ..

CVk—1)-
Thus there exist ay, ...,a;_; € F such that

Vi =aivy + -+ + Qg—1Vi—1-
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(Linearly independent h
eigenvectors
Let T € L(V). Suppose Ay, ..., \, are
distinct eigenvalues of T and vy, ..., v,
are corresponding eigenvectors. Then
\vl, ..., vy is linearly independent. )

Proof Suppose vy,...,v, is linearly de-
pendent. Let k be the smallest positive
integer such that

vk € span(vy, ..., Vk—1).

Thus there exist ay, ...,a;_; € F such that

Vi =aivy + -+ + Qg—1Vi—1-

Apply T to both sides of this equation, get-
ting
AVk = @i A+ - a1 Ae—1Vk—1-

Multiply both sides of the first equation by
Ar and then subtract the equation above,
getting

0=ar(M=A)vi+- - Fak—1 (A—Me—1)Vk—1-

However, vy, ..., v is linearly indepen-
dent. Thus all the a’s are 0. However,
this means that v, equals 0, contradicting
our hypothesis that v, is an eigenvector.
Therefore our assumption that vy, ..., v,
is linearly dependent was false. il
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( Number of eigenvalues \

Suppose V is finite-dimensional. Then each operator on V has at
most dim V distinct eigenvalues.

Proof LetT € L(V). Suppose A, ..., A\, are distinct eigenvalues of T.
Letvy,...,v, be corresponding eigenvectors. Then the list vy, ..., v, is
linearly independent. Thus m < dim V, as desired. il
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