Notation

- \(\mathbb{F} \) denotes either \(\mathbb{R} \) or \(\mathbb{C} \).

- \(V \) denotes a vector space over \(\mathbb{F} \).
Dot Product on \mathbb{R}^n

This vector x has length
$$\sqrt{x_1^2 + x_2^2}.$$
For $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, define the norm of x by $\|x\| = \sqrt{x_1^2 + \cdots + x_n^2}$.

This vector x has length $\sqrt{x_1^2 + x_2^2}$.

Definition: Dot product

For $x, y \in \mathbb{R}^n$, the dot product of x and y, denoted $x \cdot y$, is defined by $x \cdot y = x_1 y_1 + \cdots + x_n y_n$, where $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$.

$x \cdot x = \|x\|_2$ for all $x \in \mathbb{R}^n$.

The dot product on \mathbb{R}^n has the following properties:

1. $x \cdot x \geq 0$ for all $x \in \mathbb{R}^n$;
2. $x \cdot x = 0$ if and only if $x = 0$;
3. For $y \in \mathbb{R}^n$ fixed, the map from \mathbb{R}^n to \mathbb{R} that sends $x \in \mathbb{R}^n$ to $x \cdot y$ is linear;
4. $x \cdot y = y \cdot x$ for all $x, y \in \mathbb{R}^n$.

The dot product on \mathbb{R}^2 is the usual inner product, and it can be visualized geometrically as the projection of x onto y, scaled by the length of x.

Diagram:

[Diagram showing a vector x and its dot product with another vector (x_1, x_2)]
Dot Product on \mathbb{R}^n

This vector x has length $\sqrt{x_1^2 + x_2^2}$.

For $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, define the norm of x by $\|x\| = \sqrt{x_1^2 + \cdots + x_n^2}$.

Definition: dot product

For $x, y \in \mathbb{R}^n$, the *dot product* of x and y, denoted $x \cdot y$, is defined by

\[x \cdot y = x_1y_1 + \cdots + x_ny_n, \]

where $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$.

\[x \cdot x = \|x\|_2^2 \text{ for all } x \in \mathbb{R}^n. \]
Dot Product on \mathbb{R}^n

This vector \mathbf{x} has length $\sqrt{x_1^2 + x_2^2}$.

For $\mathbf{x} = (x_1, \ldots, x_n) \in \mathbb{R}^n$, define the norm of \mathbf{x} by $\|\mathbf{x}\| = \sqrt{x_1^2 + \cdots + x_n^2}$.

Definition: dot product

For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, the *dot product* of \mathbf{x} and \mathbf{y}, denoted $\mathbf{x} \cdot \mathbf{y}$, is defined by

$$\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + \cdots + x_n y_n,$$

where $\mathbf{x} = (x_1, \ldots, x_n)$ and $\mathbf{y} = (y_1, \ldots, y_n)$.

$x \cdot x = \|x\|^2$ for all $x \in \mathbb{R}^n$.

The dot product on \mathbb{R}^n has the following properties:

- $\mathbf{x} \cdot \mathbf{x} \geq 0$ for all $\mathbf{x} \in \mathbb{R}^n$;
- $\mathbf{x} \cdot \mathbf{x} = 0$ if and only if $\mathbf{x} = \mathbf{0}$;
- for $\mathbf{y} \in \mathbb{R}^n$ fixed, the map from \mathbb{R}^n to \mathbb{R} that sends $\mathbf{x} \in \mathbb{R}^n$ to $\mathbf{x} \cdot \mathbf{y}$ is linear;
- $\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

Dot Product on \mathbb{R}^n

This vector x has length $\sqrt{x_1^2 + x_2^2}$.

For $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, define the norm of x by $\|x\| = \sqrt{x_1^2 + \cdots + x_n^2}$.

Definition: dot product

For $x, y \in \mathbb{R}^n$, the *dot product* of x and y, denoted $x \cdot y$, is defined by

$$x \cdot y = x_1y_1 + \cdots + x_ny_n,$$

where $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$.

$$x \cdot x = \|x\|^2 \text{ for all } x \in \mathbb{R}^n.$$

The dot product on \mathbb{R}^n has the following properties:

- $x \cdot x \geq 0$ for all $x \in \mathbb{R}^n$;
Dot Product on \mathbb{R}^n

This vector x has length $\sqrt{x_1^2 + x_2^2}$.

For $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, define the norm of x by $\|x\| = \sqrt{x_1^2 + \cdots + x_n^2}$.

Definition: dot product

For $x, y \in \mathbb{R}^n$, the *dot product* of x and y, denoted $x \cdot y$, is defined by

$$x \cdot y = x_1y_1 + \cdots + x_ny_n,$$

where $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$.

$x \cdot x = \|x\|^2$ for all $x \in \mathbb{R}^n$.

The dot product on \mathbb{R}^n has the following properties:

- $x \cdot x \geq 0$ for all $x \in \mathbb{R}^n$;
- $x \cdot x = 0$ if and only if $x = 0$;
For $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, define the norm of x by $\|x\| = \sqrt{x_1^2 + \cdots + x_n^2}$.

Definition: dot product

For $x, y \in \mathbb{R}^n$, the *dot product* of x and y, denoted $x \cdot y$, is defined by

$$x \cdot y = x_1 y_1 + \cdots + x_n y_n,$$

where $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$.

This vector x has length $\sqrt{x_1^2 + x_2^2}$.

$x \cdot x = \|x\|^2$ for all $x \in \mathbb{R}^n$.

The dot product on \mathbb{R}^n has the following properties:

- $x \cdot x \geq 0$ for all $x \in \mathbb{R}^n$;
- $x \cdot x = 0$ if and only if $x = 0$;
- for $y \in \mathbb{R}^n$ fixed, the map from \mathbb{R}^n to \mathbb{R} that sends $x \in \mathbb{R}^n$ to $x \cdot y$ is linear;
Dot Product on \mathbb{R}^n

This vector x has length $\sqrt{x_1^2 + x_2^2}$.

For $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, define the norm of x by $\|x\| = \sqrt{x_1^2 + \cdots + x_n^2}$.

Definition: dot product

For $x, y \in \mathbb{R}^n$, the dot product of x and y, denoted $x \cdot y$, is defined by

$$x \cdot y = x_1y_1 + \cdots + x_ny_n,$$

where $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$.

$x \cdot x = \|x\|^2$ for all $x \in \mathbb{R}^n$.

The dot product on \mathbb{R}^n has the following properties:

- $x \cdot x \geq 0$ for all $x \in \mathbb{R}^n$;
- $x \cdot x = 0$ if and only if $x = 0$;
- for $y \in \mathbb{R}^n$ fixed, the map from \mathbb{R}^n to \mathbb{R} that sends $x \in \mathbb{R}^n$ to $x \cdot y$ is linear;
- $x \cdot y = y \cdot x$ for all $x, y \in \mathbb{R}^n$.
Recall that if $\lambda = a + bi$, where $a, b \in \mathbb{R}$, then

- the absolute value of λ, denoted $|\lambda|$, is defined by $|\lambda| = \sqrt{a^2 + b^2}$;
Recall that if $\lambda = a + bi$, where $a, b \in \mathbb{R}$, then

- the absolute value of λ, denoted $|\lambda|$, is defined by $|\lambda| = \sqrt{a^2 + b^2}$;
- the complex conjugate of λ, denoted $\bar{\lambda}$, is defined by $\bar{\lambda} = a - bi$.

For $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$, define the norm of z by $\|z\| = \sqrt{|z_1|^2 + \cdots + |z_n|^2}$.

This suggests that the inner product of $w = (w_1, \ldots, w_n) \in \mathbb{C}^n$ with z should equal $w_1 z_1 + \cdots + w_n z_n$.
Recall that if $\lambda = a + bi$, where $a, b \in \mathbb{R}$, then

- the absolute value of λ, denoted $|\lambda|$, is defined by $|\lambda| = \sqrt{a^2 + b^2}$;
- the complex conjugate of λ, denoted $\bar{\lambda}$, is defined by $\bar{\lambda} = a - bi$;
- $|\lambda|^2 = \lambda \bar{\lambda}$.
Recall that if $\lambda = a + bi$, where $a, b \in \mathbb{R}$, then

- the absolute value of λ, denoted $|\lambda|$, is defined by $|\lambda| = \sqrt{a^2 + b^2}$;
- the complex conjugate of λ, denoted $\bar{\lambda}$, is defined by $\bar{\lambda} = a - bi$;
- $|\lambda|^2 = \lambda \bar{\lambda}$.
Recall that if \(\lambda = a + bi \), where \(a, b \in \mathbb{R} \), then

- the absolute value of \(\lambda \), denoted \(|\lambda| \), is defined by \(|\lambda| = \sqrt{a^2 + b^2} \);
- the complex conjugate of \(\lambda \), denoted \(\bar{\lambda} \), is defined by \(\bar{\lambda} = a - bi \);
- \(|\lambda|^2 = \lambda \bar{\lambda} \).

For \(z = (z_1, \ldots, z_n) \in \mathbb{C}^n \), define the norm of \(z \) by

\[
\|z\| = \sqrt{|z_1|^2 + \cdots + |z_n|^2}.
\]
Recall that if $\lambda = a + bi$, where $a, b \in \mathbb{R}$, then

- the absolute value of λ, denoted $|\lambda|$, is defined by $|\lambda| = \sqrt{a^2 + b^2}$;
- the complex conjugate of λ, denoted $\bar{\lambda}$, is defined by $\bar{\lambda} = a - bi$;
- $|\lambda|^2 = \lambda \bar{\lambda}$.

For $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$, define the norm of z by

$$||z|| = \sqrt{|z_1|^2 + \cdots + |z_n|^2}.$$

This suggests that the inner product of $w = (w_1, \ldots, w_n) \in \mathbb{C}^n$ with z should equal

$$w_1 \bar{z_1} + \cdots + w_n \bar{z_n}.$$
Definition: inner product

An inner product on V is a function that takes each ordered pair (u, v) of elements of V to a number $\langle u, v \rangle \in \mathbb{F}$ and has the following properties:

- **Positivity**: $\langle v, v \rangle \geq 0$ for all $v \in V$;
- **Definiteness**: $\langle v, v \rangle = 0$ if and only if $v = 0$;
- **Additivity in first slot**: $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$ for all $u, v, w \in V$;
- **Homogeneity in first slot**: $\langle \lambda u, v \rangle = \lambda \langle u, v \rangle$ for all $\lambda \in \mathbb{F}$ and all $u, v \in V$;
- **Conjugate Symmetry**: $\langle u, v \rangle = \langle v, u \rangle^*$ for all $u, v \in V$.
Definition: inner product

An *inner product* on V is a function that takes each ordered pair (u, v) of elements of V to a number $\langle u, v \rangle \in F$ and has the following properties:

- **positivity**
 $$\langle v, v \rangle \geq 0 \text{ for all } v \in V;$$

- definiteness
 $$\langle v, v \rangle = 0 \text{ if and only if } v = 0;$$

- additivity in first slot
 $$\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle \text{ for all } u, v, w \in V;$$

- homogeneity in first slot
 $$\langle \lambda u, v \rangle = \lambda \langle u, v \rangle \text{ for all } \lambda \in F \text{ and all } u, v \in V;$$

- conjugate symmetry
 $$\langle u, v \rangle = \overline{\langle v, u \rangle} \text{ for all } u, v \in V.$$
Definition: *inner product*

An *inner product* on V is a function that takes each ordered pair (u, v) of elements of V to a number $\langle u, v \rangle \in F$ and has the following properties:

- **positivity**: $\langle v, v \rangle \geq 0$ for all $v \in V$;
- **definiteness**: $\langle v, v \rangle = 0$ if and only if $v = 0$;
- **additivity in first slot**: $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$ for all $u, v, w \in V$;
- **homogeneity in first slot**: $\langle \lambda u, v \rangle = \lambda \langle u, v \rangle$ for all $\lambda \in F$ and all $u, v \in V$;
- **conjugate symmetry**: $\langle u, v \rangle = \overline{\langle v, u \rangle}$ for all $u, v \in V$.

Definition: inner product

An inner product on V is a function that takes each ordered pair (u, v) of elements of V to a number $\langle u, v \rangle \in F$ and has the following properties:

- **Positivity:** $\langle v, v \rangle \geq 0$ for all $v \in V$;
- **Definiteness:** $\langle v, v \rangle = 0$ if and only if $v = 0$;
- **Additivity in first slot:** $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$ for all $u, v, w \in V$;
Inner Product

Definition: inner product

An *inner product* on V is a function that takes each ordered pair (u, v) of elements of V to a number $\langle u, v \rangle \in \mathbb{F}$ and has the following properties:

- **positivity**

 $\langle v, v \rangle \geq 0$ for all $v \in V$;

- **definiteness**

 $\langle v, v \rangle = 0$ if and only if $v = 0$;

- **additivity in first slot**

 $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$ for all $u, v, w \in V$;

- **homogeneity in first slot**

 $\langle \lambda u, v \rangle = \lambda \langle u, v \rangle$ for all $\lambda \in \mathbb{F}$ and all $u, v \in V$;
Definition: inner product

An inner product on V is a function that takes each ordered pair (u, v) of elements of V to a number $\langle u, v \rangle \in F$ and has the following properties:

- **Positivity**: $\langle v, v \rangle \geq 0$ for all $v \in V$;
- **Definiteness**: $\langle v, v \rangle = 0$ if and only if $v = 0$;
- **Additivity in first slot**: $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$ for all $u, v, w \in V$;
- **Homogeneity in first slot**: $\langle \lambda u, v \rangle = \lambda \langle u, v \rangle$ for all $\lambda \in F$ and all $u, v \in V$;
- **Conjugate symmetry**: $\langle u, v \rangle = \overline{\langle v, u \rangle}$ for all $u, v \in V$.

Properties

- **Inner Product Field (F)**: \mathbb{R} or \mathbb{C}
- **Inner Product Space (V)**: Real or complex vector space
The *Euclidean inner product* on \mathbb{F}^n is defined by

$$\langle (w_1, \ldots, w_n), (z_1, \ldots, z_n) \rangle = w_1\overline{z_1} + \cdots + w_n\overline{z_n}.$$
Examples of Inner Products

- The *Euclidean inner product* on \mathbb{F}^n is defined by
 $$\langle (w_1, \ldots, w_n), (z_1, \ldots, z_n) \rangle = w_1 \overline{z_1} + \cdots + w_n \overline{z_n}.$$

- If c_1, \ldots, c_n are positive numbers, then an inner product can be defined on \mathbb{F}^n by
 $$\langle (w_1, \ldots, w_n), (z_1, \ldots, z_n) \rangle = c_1 w_1 \overline{z_1} + \cdots + c_n w_n \overline{z_n}.$$
Examples of Inner Products

- The *Euclidean inner product* on \mathbb{F}^n is defined by
 \[\langle (w_1, \ldots, w_n), (z_1, \ldots, z_n) \rangle = w_1z_1 + \cdots + w_nz_n. \]

- If c_1, \ldots, c_n are positive numbers, then an inner product can be defined on \mathbb{F}^n by
 \[\langle (w_1, \ldots, w_n), (z_1, \ldots, z_n) \rangle = c_1w_1z_1 + \cdots + c_nw_nz_n. \]

- An inner product can be defined on the vector space of continuous real-valued functions on the interval $[-1, 1]$ by
 \[\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) \, dx. \]
Examples of Inner Products

- The *Euclidean inner product* on \mathbb{F}^n is defined by

$$\langle (w_1, \ldots, w_n), (z_1, \ldots, z_n) \rangle = w_1z_1 + \cdots + w_nz_n.$$

- If c_1, \ldots, c_n are positive numbers, then an inner product can be defined on \mathbb{F}^n by

$$\langle (w_1, \ldots, w_n), (z_1, \ldots, z_n) \rangle = c_1w_1z_1 + \cdots + c_nw_nz_n.$$

- An inner product can be defined on the vector space of continuous real-valued functions on the interval $[-1, 1]$ by

$$\langle f, g \rangle = \int_{-1}^{1} f(x) g(x) \, dx.$$

- An inner product can be defined on $\mathcal{P}(\mathbb{R})$ by

$$\langle p, q \rangle = \int_{0}^{\infty} p(x) q(x) e^{-x} \, dx.$$
Definition: *inner product space*

An *inner product space* is a vector space V along with an inner product on V.

Properties of an inner product:

- For each fixed $u \in V$, the function $v \mapsto \langle v, u \rangle$ is a linear map from V to F.
- $\langle 0, u \rangle = 0$ for every $u \in V$.
- $\langle u, 0 \rangle = 0$ for every $u \in V$.
- $\langle u, v+w \rangle = \langle u, v \rangle + \langle u, w \rangle$ for all $u, v, w \in V$.
- $\langle u, \lambda v \rangle = \overline{\lambda} \langle u, v \rangle$ for all $\lambda \in F$ and $u, v \in V$.
Definition: inner product space

An *inner product space* is a vector space V along with an inner product on V.

Notation: V

Until further notice in these videos, V denotes an inner product space over \mathbb{F}.
Definition: inner product space

An *inner product space* is a vector space \(V \) along with an inner product on \(V \).

Notation: \(V \)

Until further notice in these videos, \(V \) denotes an inner product space over \(F \).

Properties of an inner product

- For each fixed \(u \in V \), the function that takes \(v \) to \(\langle v, u \rangle \) is a linear map from \(V \) to \(F \).
Definition: *inner product space*

An *inner product space* is a vector space V along with an inner product on V.

Notation: V

Until further notice in these videos, V denotes an inner product space over \mathbb{F}.

Properties of an inner product

- For each fixed $u \in V$, the function that takes v to $\langle v, u \rangle$ is a linear map from V to \mathbb{F}.
- $\langle 0, u \rangle = 0$ for every $u \in V$.
Definition: **inner product space**

An *inner product space* is a vector space V along with an inner product on V.

Notation: V

Until further notice in these videos, V denotes an inner product space over \mathbb{F}.

Properties of an inner product

- For each fixed $u \in V$, the function that takes v to $\langle v, u \rangle$ is a linear map from V to \mathbb{F}.
- $\langle 0, u \rangle = 0$ for every $u \in V$.
- $\langle u, 0 \rangle = 0$ for every $u \in V$.

Definition: inner product space

An *inner product space* is a vector space V along with an inner product on V.

Notation: V

Until further notice in these videos, V denotes an inner product space over \mathbb{F}.

Properties of an inner product

- For each fixed $u \in V$, the function that takes v to $\langle v, u \rangle$ is a linear map from V to \mathbb{F}.
- $\langle 0, u \rangle = 0$ for every $u \in V$.
- $\langle u, 0 \rangle = 0$ for every $u \in V$.
- $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$ for all $u, v, w \in V$.
Definition: **inner product space**

An *inner product space* is a vector space V along with an inner product on V.

Notation: V

Until further notice in these videos, V denotes an inner product space over F.

Properties of an inner product

- For each fixed $u \in V$, the function that takes v to $\langle v, u \rangle$ is a linear map from V to F.
- $\langle 0, u \rangle = 0$ for every $u \in V$.
- $\langle u, 0 \rangle = 0$ for every $u \in V$.
- $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$ for all $u, v, w \in V$.
- $\langle u, \lambda v \rangle = \bar{\lambda} \langle u, v \rangle$ for all $\lambda \in F$ and $u, v \in V$.

